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Symmetries and elasticity of nematic gels
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A nematic liquid-crystal gel is a macroscopically homogeneous elastic medium with the rotational symmetry
of a nematic liquid crystal. In this paper, we develop a general approach to the study of these gels that
incorporates all underlying symmetries. After reviewing traditional elasticity and clarifying the role of broken
rotational symmetries in both the reference space of points in the undistorted medium and the target space into
which these points are mapped, we explore the unusual properties of nematic gels from a number of perspec-
tives. We show how symmetries of nematic gels formed via spontaneous symmetry breaking from an isotropic
gel enforce soft elastic response characterized by the vanishing of a shear modulus and the vanishing of stress
up to a critical value of strain along certain directions. We also study the phase transition from isotropic to
nematic gels. In addition to being fully consistent with approaches to nematic gels based on rubber elasticity,
our description has the important advantages of being independent of a microscopic model, of emphasizing and
clarifying the role of broken symmetries in determining elastic response, and of permitting easy incorporation
of spatial variations, thermal fluctuations, and gel heterogeneity, thereby allowing a full statistical-mechanical
treatment of these materials.
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I. INTRODUCTION nematic gels that form via spontaneous orientational symme-
try breaking from an isotropic gel phase. Our formalism can
The term liquid crystal1,2] has traditionally been used to be generalized to treat other liquid-crystalline gel phases.
describe phases of matter that exhibit anisotropies character- There are a large number of experimental realizations of
istic of crystals but that under appropriate conditions flowliquid-crystal gels. Of particular interest to us are liquid-
like a liquid. These phases typically have symmetries intererystal elastomerfs—8]. These materials, which are formed
mediate between that of a homogeneous isotropic fluid antdy weakly cross linking either sidechajf] or main-chain
that of a three-dimensional periodic crystalline solid. Indeed9] polymers, combine the enormous extensibility of rubbers
one can provide an almost complete characterization of aith the orientational properties of liquid crystals. They are,
liquid-crystalline phase by specifying its symmetry. For ex-therefore, of considerable technological importance. The ex-
ample, the nematic phase, which is spatially homogeneoustence of the rubbery cross-linked network appears to have
yet optically uniaxial ha® .., symmetry. The typical phase relatively little effect on liquid-crystalline phase behavior,
sequence for a thermotropic liquid crystal on cooling beginsand the standard thermotropic nematic, cholesteric, smectic-
with an isotropic fluid and ends with a crystalline solid after A, and smectic= phases have their elastomeric counterparts
passing through nematic, layered smeétiend smecticz, [8,13]. The elastic properties of these phases do, however,
and possibly hexatic phases. crucially depend on whether a given liquid-crystalline order
There is, however, a large variety of materials that havevas established before or after crosslinking. Liquid-crystal
the same macroscopic symmetry as fluids, but that cannagels can also be prepared in other ways, for example, by
flow: they are macroscopically homogeneous and isotropipolymerization of monomer solutes in a liquid-crystalline
elastic media with a nonvanishing shear modulus that prosolvent[10], or by confining conventional liquid crystal in-
vides resistance to shear distortions. We will refer to thesside a dilute flexible matrix such as aerddil,12.
materials, which include everything from glasses to elas- To fully characterize liquid-crystal gel phases, two
tomers or rubber$3], as gelg4]. One can imagine phases complementary basic questions must be addregégdlvhat
arising from a reference state ofgel (rather than a liquid  effect does liquid-crystal order have on the gklsticity? (2)
with the same macroscopic symmetries as conventional ligdow does the rigidity of the underlying gel affect liquid-
uid crystals. As we shall discuss more fully below, thesecrystal order and its stability to fluctuations? Our primary
phases do, in fact, exi$6—12], and, because they cannot concern in this paper will be with questidi) applied to
flow, they have mechanical properties and mode structuresematic gels. With regard to questid®), gel elasticity of
that differ significantly from those of standard liquid crystals. weakly cross-linked elastomers has relatively little effect on
We will call these phases “liquid-crystal gels” because theythe existence of liquid-crystalline phases. On the other hand,
are gels with the symmetry of conventionaffluid) liquid liquid-crystal elastomers appear experimentally to be more
crystals. In this paper, we will develop a powerful and gen-strongly ordered than their fluid counterparts. For example,
eral formalism to describe nematic gels and use it to explore@nlike conventional nematics, which have a milky appear-
their remarkable properties. We will focus particularly onance because of strong fluctuations of the local anisotropy
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T uniaxial gel are displacement fields and that their associated
elastic energy is expressed as a function of standard strains
of a solid. Normally, the elastic energy of a uniaxial elastic

Isotropic medium is characterized by five independent elastic con-

stants. A nematic gel that forms spontaneously from an iso-

tropic gel is significantly softer than a conventional uniaxial
solid: it is characterized by “soft” elasticity in which the
elastic constan€Cs associated with shears in the plane con-
taining the anisotropy axis vanishes and in which stress van-
ishes up to critical values of certain shept8-20.

Many of the properties of nematic elastomers can be ex-
plained by an elegant and remarkably simple exteng2dh
Nematic of standard rubber elasticity22] in which nematic order

leads to an anisotropic step-length tensor for random-flight
polymer segments between cross-linking points. This “neo-
classical” theory of rubber elasticity, which describes a par-
ticular realization of an anisotropic gel exhibits “soft” elas-
ticity [14,23 in accord with the general symmetry-based
predictions of GL.

FIG. 1. A cartoon of a liquid-crystal gel undergoing an In this largely pedagogical paper, we will explore the elas-
isotropic-nematic  transition, accompanied by a spontaneou$ic and orientational properties of nematic gels from a per-
uniaxial distortion. spective that is an extension of that of Rdf7] rather that of

rubber elasticity[7]. In particular we will describe elastic
direction, elastomer nematics are clear, indicating suppressemtoperties mostly in terms of nonlinear strain tensors familiar
fluctuations and orientational order extending beyond a mifrom the elastic theory of solids and membrariéd,25
cron. This property directly and clearly follows from our rather than the perhaps more fundamental Cauchy deforma-
model of nematic elastomer as well as from an early workiion tensor used in rubber elastic[¥2] from which the non-

[14], and it will be explored in more detail in a future pub- linear strain tensors can be constructed. Strain can be mea-

lication [15]. sured relative to any reference state. We will find it useful to

The strong interplay between broken symmetry and theneasure strain relative to both an isotropic reference state
nature of long-wavelength excitations of ordered phases is and, as is the most common practice, relative to the equilib-
major theme of physic$16]. Symmetry principles dictate rium, strain-free reference state. These states may or may not
that ordered thermodynamic phases that break a continuolie the state at the time of preparation that is commonly used
symmetry have low-energy distortions, or “soft” modes, that as a reference state in the theory(iotompressiblgrubbers.
are described by an elastic energy depending only on grad®@ur approach based on nonlinear strains that are invariant
ents of these Goldstone fields whose spatially uniform increunder arbitrary rotations of the samgler, alternatively, as
ments take the system to symmetry-equivalent states. Thee shall see, the reference sjaddlows us to keep track of
form of this elastic free energy is uniquely determined by therotational invariances with relative ease. It is particularly
properties of the reference phase whose symmetry is brokemell suited, as we will show in a future publicati¢p6], to
and by the nature of the broken symmetry itself. Conven+the treatment of renormalized elasticity arising from the in-
tional nematic liquid crystals break the rotational isotropy ofterplay of thermal fluctuations and nonlinear elasticity. The
an isotropic homogeneous liquid, and they are characterizegipproach is also convenient for the discussion of external-
by the Frank elastic free enerdl¥,2], which is a functional field-induced instabilities of an equilibrium phase. Most im-
of the Goldstone fielch, the Frank director specifying the portantly, our formalism elucidates the origin of the soft elas-
direction of molecular alignment. As illustrated in Fig. 1, ticity of nematic gels, making it clear that it arises from
nematic phases of liquid-crystal gels that form from an iso-general symmetry principles common to asgontaneously
tropic gel state also spontaneously break rotational isotropyniaxially ordered elastic medium andrist limited to any
Their long-wavelength elastic energy, however, differs sig-specific model of such materials. Our description has the
nificantly from the Frank free energy of conventional nem-disadvantage compared to the rubber elasticity approach that
atics because the reference gel statdike a reference fluid it does not naturally treat the very largas much as 400%
statg has a nonvanishing shear modulus. The elastic distof27]) extensions that can arise in elastomers.
tions of a nematic gel and their coupling to the local anisot- Though gels in their isotropic state and not under stress
ropy direction were first considered by de Genf@s Gol-  are macroscopically isotropic and homogeneous, they are al-
ubovicand LubenskyGL) [17] were the first to consider in ways randomly anisotropic and inhomogeneous at suffi-
detail the unique properties of the elastic energy of a sponeiently short length scales. Consequently, there is a local pre-
taneously formed nematic gel in their study of a model isoferred direction of orientationdland spatigl order that acts
tropic elastic medium that undergoes a phase transition to as a random orientingand pinning field. These quenched
uniaxial state when its shear modulus becomes smaller thanfeelds are also certainly present in anisotropic gels: optical
critical value. They found that the Goldstone fields of aobservations in thin films provide direct evidence of their
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existence [28,29. One consequence of such randomtions can be neglected and nematic properties can be
guenched local fields is that unstretched elastomers crosdescribed completely by the Frank director. This theory is
linked in the isotropic phase and cooled into the nematiexpressed in terms of generalized nonlinear strains that are
phase exhibit a polydomain orientational structure, whichfunctions of strain and relative director orientation and that
disappears at a polydomain-monodomain transition when @re invariant with respect to arbitrary simultaneous rotations
sufficiently large external stress is appli@®]. Such random  Of the director and mass points. Section V explores the rela-
static fields can easily be incorporated in our formulation oftion between the theory presented here and the neoclassical
nematic gels. Their study is in principle necessary to underélastomer theory. Section VI concludes with a discussion of
stand completely the effect of gel matrix on nematic orderSOMe of the many interesting open problems, such as insta-
[question(2) abovd. Such an investigation would parallel a bllltles_ of elastome_rs |_nduced by external perturbati@ng.,

body of work on conventional liquid crystals confined inside €/€Ctric or magnetic fieldsand the effects of thermal fluc-
the quenched, random, b(iearly) nondeformable environ- tuations an(_j quenched local random anisotropy ﬂel_ds, that
ment of rigid gels such as an aerofl,31-33. Experience  ¢an conveniently be addressed through our formulation

with these rigid systems indicate that random fields might

become qualitatively important at sufficiently long scales. Il. CLASSICAL LAGRANGIAN ELASTICITY

Nevertheless, in this paper, we will completely ignore the
effects of random fields and concentrate on properties of ang.
isotropic gels formed from ideal isotropic homogeneous gels
By focusing on gels in which cross links are dense and wel
percolated, we will also have nothing to say about the natur
of the vulcanization transition itse[34].

Classical elasticity24] provides a phenomenological de-
ription of the energy associated with slowB7] varying
istortions of an elastic body from its equilibrium configura-
ion. As discussed in the Introduction, it is a symmetry-
Festricted theory of the low-energy Goldstone modes associ-
ated with spontaneous translational symmetry breaking. In

B W? W'!,I also [eave for the futurg35] the analysis of this section, we will review the classical theory of Lagrang-
semisoft nematlc' elgstqmerél8,20,3§ that are prepared ian elasticity[38], introducing concepts that will be impor-
by polymer cross-_llnklng in the nematic pha_se. Thes_e mal€ent for our study of spontaneously uniaxial nematic elas-
rials are characterized by a small nonvanishing elastic mOdU[bmers
lus Cs and nonlinear stress-strain curves with a small but '
nonvanishing stress up to large strains.

This paper is organized as follows. Section Il reviews the
standard Lagrangian theory of elasticity and establishes no- The equilibrium unstretched medium occupies a region of
tation for sections that follow. It introduces the referencea Euclidean 3-space, which we will call the reference space
space consisting of points in the undistorted medium and th&z. Mass points in this medium are indexed by their vector
target space into which these points are mapped. This sectigrositionsx= (x4 ,X5,X3)=(X,Y,z) in Sg, which are their po-
emphasizes thewvo distinct rotational invariances of isotro- sitions in the unstretched medium. When the medium is dis-
pic elastic media, namely invariance with respect to rotatiortorted, the point originally ak is mapped to a new point
of the deformed sample itseffotations in the target space R(x)=(R;(x),R»(X),R5(x)) in Euclidean space. We will re-
and invariance with respect to rotation of points in the origi-fer to the space of points defined BRyas the target spac .
nal reference material that map to particular points in theSince there is no distortion wheR(x)=x, it is useful to
target spacérotations in the reference spac&ection Il also introduce the displacement vectafx) that measures the de-
discusses the standard nonlinear strain tensor, the righiation of R from x,

Cauchy-Green strain tensor, that is invariant with respect to
rotations in the target space and introduces an alternative R(X)=x+u(x). (2.9

nonlinear strain tensor, the left Cauchy-Green strain tensor ) o )
that is invariant with respect to rotations of the referenceb0th Sg andSy are Euclidean, with distances determined by

. . 2 2_
space but transforms like rank-2 tensor in the target spac&1® unit metricdx“=dxdx;, anddR"=dRdR;, where the
Section IIl elaborates on the model considered in REf].  Einstein summation convention on repeated indices is under-

It shows in particular that the elastic energy of the anisoStood[39]. It is_often intere_sting to consider generalizations
tropic gel phase expanded only to harmonic order in thef the above picture to B-dimensional reference space and
nonlinear strain does not preserve the rotational invariance ¢ d=D target space; for example, to describefor two-
the original energy with respect to rotations in the referencélimensional tethered membranes fluctuatinglifor three-
space. It also discusses the isotropic-to-anisotropic transitiofimensional real spad@5]. In this paper, however, we will
in terms of the alternative strain tensor that preserves rotd€strict our attention toD=d=3, leaving discussion of
tional invariance in the reference space. Section IV discussége€mbranes to a future publicati¢p6]. _ .
a model with both strain and the symmetric-traceless tensor Distortions that vary slowly on a scale set by microscopic
order parametef); of the nematic state. It shows that the lengths pf the reference mater(afnterparﬂcle separation in a
“soft” elasticity of the anisotropicnematig state arises be- 91@ss, distance between cross-links in an elastomey, a&t.
cause the nematic order parameter can relax strains in tifiescribed by the Cauchy deformation teng2®,40)

plane containing the anisotropy axis, as first shown by Olm- JR.

st_ed[14]. Section I_V also derives the elastic energy for nem- Ajj =—'E(9j Ri= &+ 7, (2.2
atic glasses deep in the ordered phase, where biaxial fluctua- IXj

A. Strain
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where = o;t. (2.9

<
1Q

<

T

7ij = dju; 2.3 . .
In what follows, we will simply refer tay andy as right and

is the displacement gradient tensor. Throughout the papeleft strain tensors, respectively.

we will often use matrix notation in whicM is the matrix The left strain tensoy can be contracted with other
with componentsM;; and M7 is the transpose matrix with target-space tensors, such as the Maier—Saupe—de Gennes
components\;; nematic order paramet€;; , or the electric fields;, to form

The energy of the distorted state relative to the undistortegcalar invariants such asyl@ or Ejvj;E;. In contrast, the
one depends on how much the target space is stretched reR@ntractions TwQ and E;u;;E; arenot scalars since: does
tive to the reference space, i.e., by how much the distanceot transform like a tensor in the same space as . the tensors

between two nearby points changes in the mapping from th@ij andE;E; . In the absence of external aligning fields such
reference to the target, asE that effec'uvely render the target space anisotropic, the

right strainu provides a complete description of elastic dis-
dRz—dx2=2uijdxidxj, (2.4  tortions, even if, as is the case for crystals, the reference
space is anisotropic. By is isotropic and there are external
where fields breaking the isotropy d¥, thenu cannot provide a
similar complete description, but the left straircan. On the
Uj=3(AgA—8;) or u=3(ATA-9) other hand, the left strain cannot provide a complete descrip-
tion if the reference space is not isotropic. For example,
=3 (dij+ 9+ GiUd; ) semisoft elastomers crcl)ass—linked in the nel?“natic phase wri)th a
:%(,7”+ Nji + Mui M) - (2.5 directorng, v_vhich specifies a _direction iBg, are invzilriant
under the S|multaneous rotations 1af andx no—>oR Ng
uj; is the familiar nonlinear Lagrangian strain tenga#, andx—>OR X, but not under rotatlons;;—>0R X, of x alone.
also called theright Cauchy-Green strain tensor or simply The left strainy is a scalar irSg, and it cannot be contracted
the Green strain tensf40]. It is symmetric by construction. with the reference space vectay. Thus, it is impossible to
It is alsoinvariant (i.e., transforms as acalar under arbi- construct scalar invariants involving and n, and to con-
trary rotations of thetarget space vectoR, i.e., if Ri is  struct a free energy in terms gfthat reflects the anisotropy
replaced byR/ = Oq;;R;, whereOq;; is an arbitrary rotation  of Sg. If Sy is anisotropic and there are external fields break-
matrix, u;; does not change. On the other hamg, trans-  ing the rotational invariance &, then only the deforma-
forms like a rank-2tensorunder rotations of theeference tion tensorA can provide a complete description of the en-
space, i.e., ifxi—>xi’=OF§i%xj, then[41] ergy of elastic distortions.

-1
U—OrUOR™ (2.6 B. Isotropic systems
Isotropic solids, e.g., the glasses and gels of interest to us, are For most gels, the reference space is macroscopically iso-
(statistically invariant under arbitrary rotatio@ in the ref-  tropic and homogeneous, i.e., like an isotropic fluid, it is
erence spac&g. Crystals, on the other hand, have lower invariant undeIXHT+(=)§1x for arbitrary translation3 and
symmetry and are invariant only under a point subgroup ofotationsOg in Sg. Thus, the elastic energy is invariant un-
all rotationsOg. derR(x)—OtR(T+ lex). The invariance under rotations

In contrast, invariance with respect to arbitrary rotationsQ of the target space is easy to understand: different physi-
in Sy is a property ofall elastic media in the absence of cal orientations of the materiékven if arbitrarily distortel
external aligning fields, whether they be isotropic, crystal-have the same energy. Invariance un@gf is somewhat
line, or wildly inhomogeneous. Thus, because it, by con-more subtle though complementary. Figure 2 provides a use-
struction, incorporates th®r invariance, in most instances, ful graphic representation of this invariance in two dimen-
uj; is the strain tensor in terms of which elastic theory issions. Consider a circle of radiusin the reference space
most conveniently formulated. However, here we are interconsisting of the pointg=r(cosg,sin¢)=(r,¢). Under dis-
ested in systemggels that exhibit rotational invariance in tortion, it is mapped onto some closed curveSinconsisting
thereferencespace, i.e., a@g invariance ofSg, and, there-  of points R(¢). Thus, the pointK(,¢,) in Sk is mapped to

fore, a distinctieft Cauchy-Green strain tensor, the point Ri=R(¢;) in Sy, (r,¢,) is mapped toR,
. ) T =R(¢,), and so on. Under a rotation throughin Sy, ¢
vij=z(AjAj—&j)  or v=3z(AA—9) — ¢+ 6. Because of the isotropy of the undistorted, refer-
— (AUt U+ Il Il ence state, the energy is not changed if the pointg { 6)
2 (il + 9 Ui+ Il dy) rather than K,#) are mapped to the pointR(¢), i.e
=3 (7 7ji T Wik MjK) 2.7 (r,¢1—0) is mapped tR,, (r,¢,—6) to R, and so on.

Care must be taken to incorporate the above symmetries
is useful[42]. This tensor is invariant under arbitrary rota- in the free energy density of such homogeneous and isotropic
tions Or in Sy, but it transforms like a rank-2 tensor under gels. Invariance with respect to translationsn Sy is en-
rotationsO+ in Sy: forced by requiring that the free energy density depend only
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It must, therefore, be constructed from the scalar invariants
Tr(AAT)" and detA AT=(detA)? [43]. Alternatively, the
free energy can be equivalently expressed in termsafy,

with the respective invariances

f(u)=f(0rUOR™Y), (2.113

f(v)=f(OO7Y), (2.11b

which are enforced by allowing only fully contracted powers
of strain tensors to appear. The enerdiég) andf(y) can
mode be derived fromf(A) using

detAAT=exp Trin(§+2u)=exp Trin 5+ 2v),

T =TH3(ATA =9 "= T 3(AAT-9)"=Try".
(2.12

Thus,f(u) andf(v) depend only on T"=Try", andf(v) is
thesamefunction ofy thatf(u) is of u. For the discussion of
encoding these tw@g and O symmetries at the harmonic
level in the phonon variabla, see Appendix B.

Although many of the properties of nematic elastomers
follow directly from the above invariances, in what follows,
it will be useful to have explicit forms for the elastic free
energy density. A model free energy in terms nonlinear strain
tensoru, up to fourth order iru is

f(u)=3N(Tru)?+ uTru?—CTru+ D’ (Tru?)?
—E'TruTru?. (2.13

As just discussed, this free energy can be expressed equally
FIG. 2. Schematic representation of mappings from the referwell in terms ofy merely by replacinqu by v. Invariances
ence spacéy to the target spac&;. The pointsx;=(r,¢;) and  with respect to rotations iBz andS; are enforced irf(u) in
Xo= (I, ¢2) in Sg are mapped, respectively, to the poiRtsandR,  different ways. Symmetry und@+ is enforced by the con-
in S;. There is a strain enerdyg associated with this mapping. For struction of the strain tensas, Eq. (2.5, which, being a
isotropic reference spaces, mapping of point§gn first rotated by scalar inSy, is automatically invariant undé- . Invariance
¢ inside the reference spatdescribed by a rotation matri@;*) to under O, is enforced by only allowing terms ifi(u) that
the same set of points iy, i.e., mapping pointsq=(r.¢1~6)  transform as a scalar und@g, i.e., only fully contracted
andx;=(r,¢,— ) to R, andR, clearly produces the same energy n,yers ofu. In contrast, invariance df(v) with respect to
Es as the unrotated mapping. Subsequent target-space ro@fon o _ s enforced by construction of the strain tensda scalar
by 6 of the resulting distorted state with poirfieg andR, mapped i?] Sg), whereas that with respect @ is enforc?ad by only
to R; and R, costs no energy. The transformatioR(X) . - =
1 ) i ) . allowing terms inf (v) that transform like a scalar undéx;,
—OrR(Oz x) between energetically-equivalent nematic states e requiring that all the target space indices be contracted
the Goldstone mode responsible for the novel elastic properties of ™" . ;o )
nematic elastomers. ~ As usual, the reference state, relative to whictis de-
fined is taken to be in mechanical equilibrium, guaranteeing
that no terms linear iw appear. The first two terms éfare
the standard elastic energy of an isotropic medium with
andu the Lamecoefficients 24]. We have included stabiliz-
ing nonlinear terms in the strain tensoerbecause we will
eventually want to consider phase transitions to an aniso-
IR, X! tropic state induced by a decrease in the shear modulus
Ajj—Orik—, P OrikAORjj - (2.9 beIovy_a critical value. In the spirit of Landau theory of phase
X 9% transitions[16], at present, we vieye as a phenomenologi-
cal parameter that is allowed to vary and even become nega-
The free energy density of an isotropic gel is invariant tive. As we shall see in more detail in Sec. IV, the origin of
underindependent @ and O, rotations and must satisfy  a diminishingu in liquid-crystal elastomers is the instability
4 of the isotropic state toward the development of nematic
f(A)=f(OrAOg"). (2.10  |iquid-crystal order characterized by the Maier-Saupe order

on spatial derivatives dR with respect to, i.e., depend only
on A and possibly higher derivatives &.

Under rotations inSg and Sy, the Cauchy strain tensor
Aj;j transforms according to
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parameteR. In f, we have left out one third-order and three The strainu;; is still invariant under arbitrary rotation i,
fourth-order terms permitted by symmetry, namely, the one§© funi IS invariant under these rotations, as it must be. The
proportional to (Ta)3, (Tru)*, (Tru)?Tru?, and TuTru?, reduced symmetry of the reference state introduces an asym-
respectively. Though these terms can easily be included, thefpetry between the reference and target spaces, and it is no
effect is small for the nearly incompressible systems of mostonger so useful to introduce the alternative strain tensor
interest to us. unless we wish to explicitly discuss coupling between strain
Our primary interest is in the state witlpontaneously and another target-space tensor-field order parameter, such as
broken rotational symmetry that is produced wherfalls ~ the Maier-Saupe order parameter for a nematic.
below a critical value. To describe this state and the transi- The elastic energ¥, of Eq. (2.19 is harmonic in the

tion to it, it is useful to decompose; into its scalar(in Sg) ~ nonlinear strair;; . Higher-order terms im; are, of course,
and symmetric-traceless parts: permitted and are in fact necessary to preserve full rotational

invariance inSg, which is present(but hidden, if the
uij:%&jukﬁﬁij , (2.14  uniaxial asymmetry ari_ses as a result of tmzonta_neous
symmetry breaking of aisotropic state, as happens in nem-
where atic elastomers, introduced in Sec. lIl.
In semisoft elastomeild8,7], the rotational invariance of
ﬁijzuij—%éijukk. (2.15  the soft-elastomer isotropic statdiscussed nextis only
weakly broken. Any model describing these systems must
Using Eq.(2.14 in Eq. (2.13 and keeping only the lowest- introduce anisotropy in such a way that both the isotropic
order terms in Tu, we obtain the model free-energy density and the anisotropic soft phases are reproduced when the an-
that we will use in discussions of the anisotropic state andsotropy is set to zero. The simplest such model can be con-

the transition to it, structed by adding an anisotropic term
f=3B[Tru—(E/B)Tru*]*+fy, (2.16 fanis= — ;i Noy (2.20
with which breaksOg symmetry, to the free energy of E@.16).
5 5 5 Heren, is a vector inSi that specifies the direction of pre-
f1=3ATru?— CTru®+D(Tru?)?, (2.17  ferred alignment, anth is a field measuring the anisotropy

strength. The properties of this model will be explored in a
whereA=2u, B=\+ %,u, is the bulk moduluse=E’—-C, separate publicatiof85].
D=D'—E?/(2B), and for simplicity we have dropped
qualitatively inconsequential cubic and quartic terms io Tr ;. STRAIN-ONLY MODEL OF NEMATIC ELASTOMERS
[44].
Under appropriate conditions, for example, for suffi-
C. Anisotropic systems ciently small shear modulug in the model free energy of

Often the reference state is a crystal that is invariant onlyFd- (2.13, there can be a transition from an isotropic state
under operations of some subgroupQy. In this case, there With A~ J't0 a uniaxial one with two rather than one distinct
are additional combinations of the strain tensor that are in€igenvalues ford. This nematic-gel state is obtained from
variant under the reduced set of symmetry operatiorBzof ~ the isotropic one by stretching or compressing along some
and the elastic energy is in general described, to harmonigrbitrary direction inSg specified by a unit vectat, which
order inuj; , in terms of a fourth rank elastic-constant tensorWithout loss of generality we take to be along thexis. It is
Ciji» With f:%cijkluijukl' We will be particularly inter- characte_rlzed _by_an anl_sotroplc equilibrium ng_ht strain ten-
ested in uniaxial systems with axis along, for which the SO Uo With principal axis alongn,. The transition to the
general form of the elastic-constant tensor(bisit see Sec. nematic gel can thus be described completely in terms of the

) free energyf (u). Alternatively, the nematic gel can be char-
acterized by an anisotropic equilibrium left strain tenggr
Cijki = C1NgiNgjNokNor + Co(NgiNg; St + NoNgy Sﬂi) with anisotropy axis along some unit vectgris Sy, and the
transition to it can be described Hyv). The nematic gel
0. 0] =
+C3dy) i +Cal 8 S5+ 8 85 ) breaksboth Oz and O symmetry. The description in terms

of u displays explicitly the broke®g symmetry and that in
terms ofy the brokenO; symmetry of the nematic gel. The
+ 5?kln?nf)+ 5JQIL nionﬁ), (2.18 underlying order parameter, however, is the deformation ten-
sor A, which exhibits both broke®g and Ot symmetry in
WhereéﬂLzﬁij—nOinoj. The elastic energy in three dimen- the nematic gel. Even though the nematic gel breaks two

1,00, 0L 00
+5Cs( ) njnl+5?l nyny

sions with thez-axis chosen alongg is symmetries, they are both broken at the same time, and there
is only one transition from the isotropic phase to the nematic
funi= 3C1UZ,+ Coll{Uyxt Uyy) + 5 Ca(Uyy+ Uyy)? gel. As discussed in Sec. Il B(u) and f(v) are identical

. 5 , functions of their arguments, andandy develop nonzero
+Cy(uituyy+2u5 ) +Cs(ug,+uy,). (219  anisotropic values simultaneously.
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Though free energies expressed in terms of the swain where bﬂi: dij—NoiNgj . The corresponding right equilib-
andy provide complete descriptions of the phase transitiorrium strain tensor is
to the nematic gel, it is important to remember that the full
position functionR(x) or equivalently the displacemeu(x)
is needed to describe all configurations of the gel. The ten- ) o .
sors A, u, and v only provide information about long- The anisotropy of_the uniaxial state can be characterized by
waveiength distortions. In nematic gels, the shear modulufe anisotropy rati¢47]
for certain shear strains vanishes, and the energy expressed

=3(AgAo— ). 3.3

e
NI

0

in terms of strains alone is not positive definite. A full statis- = Ag (3.4)
tical mechanical treatment of nematic gels requires the elas- A(ZM ' '

tic energy appearing in the partition trace to be positive defi-

nite, and additional curvature energies depending on th&ince

second derivative oR(x) must be added to it to make it so.

This will be discussed in more detail in a separate publica- AJAo=A3 [ 5+ (r—1)ngng], (3.5
tion [26]. L . o :

In this section, we will explore the properties of the spon-it is clear that the system is isotropicrif= 1 and only aniso-
taneously formed nematic gel described in termaucdnd ~ tropic if r#1. Both positive (>1) and negative r(<1)
f(u). The description in terms af is essentially equivalent. Uniaxial anisotropies are possible, but we will focus mostly
We will explicitly derive the soft elasticity of nematic gels On Positive uznlaX|aI systems.llzln incompressible systems,
whereby the strain elastic consta®¢ [Eq. (2.19] vanishes detAo=AgiAg, =1, Ao, =Ag?, and r=Ag. Many of
identically [17] and there is zero stre$86] associated with the properties of the uniaxial phase depend critically.on
appropriate strains up to a critical value perpendicular and The goal of this section is to explore the elasticity of this
parallel ton, as long as other straifjg5,46 are allowed to  Spontaneously uniaxially-ordered gel. Distortions in such a
relax to their lowest-energy configurations. Our treatmengystem can be described by deviations,
provides a complete description of nematic gels and transi- _ T T
tions to them without any reference to the undelying nematic Su=U—Uo=3(A"A—AyAo), (3.6
order. In the next section, we will consider nematic order andOf the strain tensoa from its new equilibrium value. both
its coupling to strain and show that instabilities toward the = q =0

development of nematic order drive the decrease in the she easgred in the coordinatesof the original |sqtrop|c state_
modulus discussed in the preceding section. r- It is, hovv.ever,.more common and convementio describe
these distortions in terms of displacemei®$(x’')=R(X)
. and strainau’ (x’) expressed as functions of the coordinates
A. Description in terms of uj; X' =Ry(x) of the new equilibrium stretched state,

It is quite clear from the cubic form of the elastic free

energy, Eqs(2.13 and (2.17, that whenu becomes suffi- R'(x")=x"+u"(x") =X+ Ug+ du(x), (3.79
ciently small, for finiteC, there is a first-order transition ,
from an isotropic to a uniaxially distorted elastic state, which u'=3(A A —-9~3( '+ Z;’T ) (3.7

is very similar to the familiar isotropic-to-nematic transition
[1,2]. We will consider this transition in more detail in Sec. whereAj;=dR{/dx; and n{;=duj/dx| . Since
[II C. In this section, we will investigate the resulting aniso-
tropic elastic state, whose properties depend only on the ex- IR, IR{ dxy
istence ofspontaneouslyormed anisotropy and not on any P 9% el ax.
. f . . . IX
particular model of the isotropic-to-nematic transition. ! ke
In the positive(negative uniaxial state that results from
such transition, the elastic material is stretckesmpressed
alongng in Sy and compressetkstretched along directions
perpendicular tang. This anisotropy axis can point in any
directionny in S;. For the moment, we will tak&;=n,, Su=ATu’A 3.9
i.e., we do not rotate the sample after it has been stretched. In = =0z 20 '
this case, the coordinates of its mass pointSirare, there-
fore, described by

:Ai,kAokj y (38)

the strain deviationdu is directly proportional tou’ and
therefore proportional to the symmetrized straimy’ (
+7'T)/2 when linearized,

One would normally expect the elastic free energy for strains
u’ about the new uniaxial state to have the form of Eq.
Ro(X)=X' =X+ U= A X, (3.1) (2.19, characte_rized by fi_ve indepenplent elastic constants.

= However, as discussed in Introduction, the fact that the

where the deformation tensor is spatially uniform and givertiniaxial state arose vigpontaneousymmetry breaking of

by an isotropic state guarantees that the shear modijusust
vanish. We now demonstrate this explicitly.
Agij= Ao, 5ﬂi+A0Hn0inoj , (3.29 Since the original free energy is invariant under rotations
Or in Sg, the anisotropy directiong in Sy is arbitrary, and
=MNoy 6ij+ (A= Agr)NoiNg; (3.2b  states characterized by stra@hgoggl and ug must have
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the same bulk energy. This means that there is no bulk en->1, this relaxation is possible only for positive, (exten-
ergy cost associated with a strain sion perpendicular to the uniaxial directiog), negativeu.,,
(compression alongy), and either positive or negative,, .
For negative anisotropy systems<(1), the zero-energy
strain relaxation is possible only for negatiug, and posi-
tive u_,.

To illustrate this, consider first a sample with aligned
along thez axis, withr>1. From Eq.(3.123, it follows that
u,, = (1/2)(r — 1)sirfg s positive for a rotational strain when

cosd 0O sind r>1. Thus, we can only have soft elasticity for extensional
Og= 0 1 0 (3.10) _strains along<,. and we takeu,,>0. If no relaxation of s.train
= ] ' ' is allowed, this stretch would cost an energy proportional to
—sing 0 cosd u.2. If, however, strain relaxation is allowed, strains

U'(6)=(A0) H(QrWQr ~Uo)Ao" (310

relative to the uniaxial state characterizedgysince it de-
scribes a rotation sz, and is, therefore, a Goldstone mode
of brokenOgr symmetry. For rotations through about they
axis,

Using this O inside Eq.(3.10, we find thatu;;(6) is a

nontrivial strain even though it describes a pure rotation in u,,=——u
Sg. Under this rotationui’j(e) only has components in the '
xz plane(the plane of rotatiord) that are

1
1—cos 29 r~Y2sin 26 sz:iEVUxx(r—l—ZUxx)' (3.19

u=—(r—1 .
u=z )(r‘l’zsmze —r~1(1—cos 29)
(3.128  convert theu,, strain to a zero-energy rotation strain tensor
(Goldstone modewith rotation angle

(3.12b - 2ul
f#=sin —r (3.19

N(r—l)(O 0)
- 2\r 16 0/’

wherer is the anisotropy ratio introduced in E.4), and
the final form is valid for smalb. Since, as just argued, the Thus, in an ideal system, there is no bulk energy cost asso-
elastic free energy must be invariant under rotatiorSsinit  ciated with strains € u,<(r—1)/2.
cannot depend on the rotation angleand, therefore, there  The angles specifies the direction of the induced uniaxial
must be no energy cost associated with an infinitesimal straigquilibrium stretch axis relative to theaxis of a fixed coor-
uy,=U,,. Similarly, invariance with respect to rotations dinate system ifSg. In the current problem, this anisotropy
about thex axis implies no energy cost associated with theaxis is initially alongz, and it rotates toward theaxis asu.,,
strainug,. Thus, the shear elastic modul@g must identi- s increased until, at the critical strain), = (r—1)/2, 6
cally vanish in aspontaneouslyniaxial state, whoséar- = /2 and the anisotropy axis has been rotated to be along
monicelastic energy, the x axis, as illustrated in Fig. 3. For straing, larger that
, L , , , r—1)/2, the sample will merely stretch along its new an-
Fin= 2 C1lizz + Colly {Ujoct Uyy)+ 7 Cal Uyt UYY)2 i(sotroi)y axis annSx with the agditional strair?ﬁu)’(X: Uy
+Cy(ull+ u§§+ 2u>’<§ , (3.13  —(r—1)/2. We can calculate the energy associated with this
additional strain from the harmonic free energy of E213
is characterized by only four elastic constants. The supemrovided we remember thau,, is measured relative to the
scriptN in ) . is introduced to distinguish it from the stan- original reference system with the anisotropy axis alang
dard uniaxial energy ., [Eq. (2.19] with C5#0. Because rather tharx, i.e., if we remember to replacg, in Eq. (3.13
f . contains only quadratic terms in straij) relative to the by u,,= (ASL/A(Z)”)EU)’O(: Suy, T . Uy, andug, should be res-
broken-symmetry uniaxial phase, as in similar syst¢4®8  caled as well, but since we minimize over these quantities at
it is only invariant with respect tanfinitesimalrotations in  fixved U’ ici i -
Sg and terms nonlinear inj; must be incorporated in order {LX;Sd_ %é}fgfm?ﬁgn&ﬁsh%ﬁiﬁifgﬁgﬁtﬂ%g?ﬁder these rescal
to encode the fulDg invariance[15].
There are striking experimental consequer|d&s-2Q of 0 if sul,<0;
the existence of zero-energy strain$(6) given by Egs.

— 2
(3.10, (3.12§) for arbitrary 6. _Nr?\mely, if on_e of the_ com_po- of = i2< o C3 (5u)r(x)2 if oul,>0.
nents of strainu,,, u,,, oru.,is imposed with the right sign, 2r 2C4+2C;

the other two components can under appropriate boundary (3.16

conditions adopt values to produce the zero-energy rotational

strain of Eq.(3.123. Under general boundary conditions that Consequently, the stregg/JdA = Ay df/du,, for an ideal
prevent access to this zero-energy state, microdomain strusematic gel is zero fou,,<(r —1)/2 and grows linearly in
tures with low-energy rotational strains will form. When éuy, for u,,>(r—1)/2 as shown in Fig. 4.
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FIG. 3. Schematic representation of the transformations of a FIG. 4. Stressu,, versus strain,, for an ideal soft nematic

rectangular piece of soft nematic gel subjected to a strain PETPEIX|astomer stretched along a direction perpendicular to the direction

dicular to its anisotropy axis. lfi,, andu,, are constrained to be ¢ g alignment. The stress is zero up to a critical straip,

zero, there is no rotation of the anisotropy axis indicated by a_ Jr. Beyond that, the stress initially grows linearly from zero.

double arrow as shown in the middle figure. If these quantities are

allowed to relax, the anisotropy axis rotates to produce a state with ot e F N2
the same energy as the initial state as shown in the final figure. |P4Vhere we used S?rﬂ—ZuX)j(r 1), Eq. .19 and (A

the process, the original rectangle is transformed into a parallelo— 1= 2Uxx to obtain the final form. This is exactly the same
gram sheared through an anwgy and its anisotropy axis repre- I‘eSU|t 0bta|ned via a dII’eCt minimization Of the n90C|aSSIca|

sented by the double arrow is rotated through an afgle rubber energy in the incompressible lini9].
The angled+ is simply the angle that the uniaxial anisot-
The angled; of rotation of the anisotropy axis in the ropy axis makes with theaxis in the target space. This axis
target spac&; is not the same as the rotation anglén S;.  is the principal axis ofA AT (or equivalently ofy). A direct
Indeed, since the energy is invariant with respect to rotationsalculation of A’ AAJA Tyields
in Sy, 6+ would be arbitrary, were it not for boundary con-

ditions. A specific experimental geometry might, for ex- cogér+rsintr  (r—1)sinfrcosbr
ample, demand that there be no change inzleeordinates /}éT:AgL (r —1)sin 6:c0s6 r co26-+siro- |
of mass points as a function af. This is the situation de- T T T(3 22
picted in Fig. 3. In this case,,=0, butA},#0, and thexz '
submatrix of A, takes the form which is nothing more than ,A," rotated though; so that
the principal axis is alongy;=(siné;,cosé;). Under the
L [Ax A transformation defined by’ of Eq. (3.17), a rectangle will
A= 0 AL (3.17) be transformed into a parallelogram with two edges parallel

to thex axis and two edges making an angle

This deformation tensor corresponds to a zero-energy rota-
tion in Sg described by a rotation matri®r [Eq. (3.11)]
provided there exists a rotation matrix

!
_ Xz _
fe=tan '—=tan !
!

zz

(r—1)tané+

r+tarfé; (3.23

(3.18 with the vertical. Bothdgz and 6 are indicated in Fig. 3.
Note that the argument of the inverse tangent in the expres-
sion for Og rises from zero, reaches a maximum, and then

in the xz plane ofS; such that the straih = A" A relative  returns to zero ag; passes from zero te/2, the maximum

10

T

cosfr  sinbq
—sinf; cosbé+

to the original reference system@A,Og*, or angle of rotation of the anisotropy axis. In the process,
e passes from having extensia,| along thez axis andA g,
A'=07A0r A ", (3.19  along thex axis to having extension, along thez axis and

_ _ _ _ _ Ag along x. Thus, the original rectangle is distorted to a
an expression that is fully consistent with the form of strainparallelogram that first becomes more slanted as strain in-
Goldstone mode’(6), Eq.(3.123. A straightforward calcu-  creases, reaches a maximum slant, and then becomes less

lation yields slanted until it finally reaches a rectangular form that is pre-
’ . . cisely the original rectangle rotated by2 before stretching
A= —cos@sinfr+ \r sing cosor, (320 further along thex axis.

. _ - - It is notable that the expression, E.21b, for sinéy is
which, upon imposition of the boundary condition 4f,,  independent of the detailed form of the elastic energy and

=0, Eq.(3.17), gives that it is characterized only by the level of anisotrapf the
] initial uniaxial state and by the deformatiai, applied to it.

SirPg.— r sir’6 (3.213 The advantage of our approach is that it makes it clear that

T 1+ (r—1)sirfe ' the phenomenon of soft response, summarized by Fig. 4, i.e.,

zero stress for a range of longitudinal strain, applied perpen-

r 1 dicular to the uniaxial direction, follows entirely from gen-
=1 1-— |, (3.21b eral symmetry principles of breaking of rotational invariance
r Asx of the reference state. It is a property afiy nematic gel
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formed spontaneously from an isotropic gel, and is therefore A0L25Uu 2(,]” + ,,“ + 77|k77]k)+ L(r— 1)(n0|n0k77]k
independent of the details of the microscopic model of the
gel and the mechanism that drives the uniaxial instability, as + nikn0kn0j+ 7ihNokNol njl), (3.26
confirmed by the generic form fad; in Eq. (3.21b.

There is spectacular experimental eviderd8] for  interms ofy’, with r the previously defined anisotropy ratio
6+(AL), Eq.(3.21b. Likewise, experiments confirm the GL [Ed. (3.4]. Using the decomposition
prediction of softnesgévanishing stress up to a critical value

of strain, Fig. 4, in the limit in which the gel is cross-linked 7' =95t va 7 =05 A (3.27)
in the isotropic phase. In contrast, chemically identical net- ) ’ ) ’ _
works cross-linked in the nematic phase exhibit a plateau itvhere »ng;;= 7gj; and 7,;;= — 7,;; are, respectively, the

the stress-strain curve that approaches zero as the degreesyimmetric and antisymmetric parts efj and defining a ro-
nematic order during cross-linking is decreased. See Refation angle
[20] for a presentation and discussion of these results.
It is clear that forr>1 an imposed shear strair, or a L U ,
compressional strain,, <0 can be converted to zero-energy Q= ieijka_x_,: 2 €ijk TAkj (3.28
rotational strain just as for the cas¢,>0 just considered. )
The energy of a shear strain is zero fou,,|<(r  we obtain
—1)/(4yr), and that of a compressional strain is zero for

|us]<(r—1)/(2r). While softness with respect temall Aol ovij = gt %(r—l)[nOinokr;’Sjk+ 7sikNokNo; ]
shears below a critical frequency has been obsefd8H to
our knowledge, our above prediction of softness ovenite —2(r =1)[Ngi(NoX Q)+ (neX ) ing;]

range of strain for the geometries with imposeg+0 or (3.29
u;,<0 has not been tested.

The above discussion and the structure of the zero-enerdg linear order inz/;. We thus explicitly demonstrate that
strainu/, /(6), Eq.(3.123, imply that our arguments for soft ovjj is a function of both the symmetric and antisymmetric
elast|C|ty go through equally well for the negative uniaxial parts ofj; . At first pass, this observation appears to contra-
anisotropy elastomers,<1, but with reversed signs of the dict the facts that the linearized form é; , Egs.(3.70 and
imposed zero-energy strains. Thus, in negative uniaxial elag3.9), does not depend on;\ij , and that the harmonic free
tomers, there is no stress associated with unconstram@d  energy of the nematic phase must have exactly the same
pressionalongx, uy,<0 andextensioralongz, u,,>0. form whether expressed in terms 6ti;; or év;;. The di-
lemma is resolved by noting that only the soft components of
the strain 6vxz and 5vyz, depend onr;AIJ , and that, to har-
monic orderfun,(v) is guaranteed by invariance(which

In the discussion just presented, the nematic state and iteads to vanishing o€s) to be independent of such strains.
soft elasticity were described in terms of the right strain ten-Consequently, consistent with the expectations, in hgth
soru;; . As demonstrated in Sec. Il B, this state could equallyand v;; descriptions no antisymmetric part of the deforma-
well be described in terms of the left strain tensgr, which  tion tensorz,;; appears.
has an equilibrium value

B. Description in terms of v;

=1(Ao Z}g— 5) (3.24 C. Isotropic-to-uniaxial transition

||G
I\)II—'

In a transition from the isotropic to the uniaxial state, the
strain develops a nonvanishing anisotropic component. We
that is identical tau, in the basis defined by,. The devia-  can describe this transition equivalently in termsuofnd
tions from the spontaneously anisotropic equilibrium statef(u) or in terms ofy andf(v). To be concrete, we will use
Ao can be described by u-description here. Since the isotropic, volume-changing part
of the strain is insensitive to anisotropy, the appropriate order
parameter for the transition is the symmetric-traceless com-

ponent of the strai@ [Eq. (2.15], which is identical in form

to the symmetric-traceless order-parameter teiggerof a

as well aséu. The deviationsdy and éy, however, have nematic liquid-crystalline phasgl,2]. Thus, in mean-field
different relations to the displacement gradient tengér theory, the transition from the isotropic to the uniaxial state
relative to the anistropic equilibrium state. As we saw in Eq.is identical to the isotropic-to-nematic transition, whose
(3.9), éu is linearly proportional tou’ and at linear order properties have been exhaustively studig®]. (In Appen-
depends only on theymmetrizegart on] Sy on the other dix A, we review the formal properties of this transition that
hand isnot proportional toy’ defined by Eq(2.7) with A are relevant to the current discussjomo see this in more
replaced byA’, and to linear order, it depends @oththe  detail, we can integrate out the “massive”drfrom f(u) in
symmetric and antisymmetric parts gf. Using Eqs.(3.25 Eq. (2.16), to obtain an effective theory in terms ofalone.
and(2.2), we easily derive This operation yields

Su=v—v0=3(AAT—A0AJ) (3.29
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m

3
Tr =g —Tru (3.30 C4:§C¢A3L ' (337

and the effective free energy reduces fte 1(u) of Eq.  with Cs=0, as anticipated in our early discussion of the
(2.17. Because of the presence of a cubic invariant, the fre@eneric, symmetry-dictated form of the elastic free energy.
energy f—1(u) exhibits a first-order transition ah=A, oM Eq.(3.32 we note thaty has the same sign &,

=C?/(12D) to a state with ensuring thaC,~Cy is always positive.
aﬂ = ,J,(nf)n?_ %5”), (3.3) D. Biaxial nematic
. ) It is clear from the form oifum(u’), Eq.(3.13, that if C,
where s satisfies the equation of state is driven negativ¢50] the uniaxial state becomes unstable to
_ 8 /2 strains in thexy plane perpendicular to the established
A=Cy+3Dy"=0. (3.32 uniaxial order, i.e., the uniaxial state becomes unstable rela-

tive to a biaxial state with different equilibrium strains in all
three directions. A biaxial nematic gel is softer than a unaxial
one[51], and, as we will show here, it has no nonvanishing
u” —u 4= _¢2 - (3.33 shear moc_iulus ir_1 th_ree dime_n_sion_s. The order parameter for
the unaxial-to-biaxial transition is the two-dimensional
ymmetric-traceless tensor obtained by projecfjrtgﬂo the
Xy plane. Since there are no cubic invariants of a two-
dimensional symmetric traceless tensor, the transition from

The total strain in the distorted state is thus

This corresponds to a stretched state with target space posS
tions Rp=Ax characterized by a deformation tensor

A 0 0 the uniaxial to the biaxial state is generically a continuous
oL transition in thexy universality class.
Ao=vV1+2u%=| 0 Ao, O |, (339 The biaxial phase is characterized by a Cauchy deforma-
0 0 Ay tion tensor with three independent components,
4 112 Ao=| 0 Agz 0 ], (3.38
= A 0 0 A
Ao =1+ 9B P 3 Lp) , 03
s and the corresponding equilibrium strain tensor given by
E 4
_ S Z2e
U= 0 U 0 |, (3.39

This form for A, preserves the volume up to ordgf. The
order parameteg)/ is a direct measure of the spontaneous 0 0 U

stretch anisotropy of the nematic state, with _ 5 -
with ug,=(Ag,—1)/2, «=1,2,3. The additional broken ro-

Y= 2(AoH AZ)=3%A3 (r—1), (3.3p tational symmetry of the biaxial relative to the uniaxial phase
causes more shear elastic moduli to vanish. As in uniaxial
wherer is defined in Eq(3.4. gels, strains of the form of E¢3.10 [with u, given by Eq.

The elastic free energl—1(u) can now be expanded in (3.39] that arise from arbitrary three-dimensional rotations
powers of Su=u—u, and reexpressed in terms of, de-  Orin Sg cost no energy. For simplicity, we consider only the
fined in Eq.(3.9. Ward identities, imposed by the rotational most generainfinitesimalrotation matrix, which can be ex-
O, invariance, guarantee that terms proportional do,()?  pressed in terms of rotation anglég, 6¢,, andé,, respec-
and ((Suyz)2 vamsh The harmonic elastic energy is, there-tively about thex, y, andz axes as
fore, given byf! uni LEQ- (3.13] with

1 -6, 46

4E \2 4 2 _ _
01:{5<1—-—— )-——A+~—C¢L\gp Or=| 6= 1 O] - (349

3B 373 —6, 6 1

The symmetric zero-mode strain tensgr calculated from
this Og and Eq.(3.10 has components that to linear order in
the infinitesimal angles of rotation avg,=u,,=u,,=0 and

1+

3B 3

4E 2 1 7,
Co=|B|1- 55 +3A- 3CU[AGAS,,

AOJ_ '

8l 1 2E \? 1A 4
Cs= * 3”7 37 3 3¢V Usy= Ao Agy (Ugi—Ug) b,
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U= — Ao A o2 (Ugs— Uga) oy, nematic transition of the mesogenic component of the gel,
that is, orientational ordering of, e.g., side-chain or main-
U§Z=A621A531(“02_ Uga) Oy - (3.413  chain nematogens. It is, therefore, of some interest to de-

velop a model in which the orientational order param&gr
Since the underlyin@®g invariance demands that there can explicitly appears.
be no energy cost associated with such zero-mode strains, the A generic model free-energy density for such a model of a
elastic energy cannot depend on the shear sttgipsu,,, or  liquid-crystal gel will consist of an isotropic elastic term
uy,, to harmonic order. The hallmark property of solid that it fe(u), @ termfo(Q) for nematic orientational order, and a
can support a static shear stress is therefore lost in a spontaematoelastic ternfic(v,Q) that couples strain to the nem-
neously biaxial solid. The biaxial nematic is an anisotropicatic order paramete®;; :
tethered fluid52-54. The harmonic elastic energy of a bi-
axial gel, therefore, depends only on the compression/ fe-o=Tfatfotfc. (4.9

extensional straing,,, uy, andu,, and has the form

For simplicity, we can takd to be the elastic energiyof

. L, Eq. (2.13 with only quadratic-order terms iw; (or, equiva-
fbiax:EE BapUaalps - (3.42 lently, vj;), and near thé-N transition, we can choose the

usual Landau—de Gennes form figy:

There are in general six independent componeni, gf. As

in uniaxial gels, there is soft compressional and extensional f’Q: %réTrQZ—w3TrQ3+w"1(TrQ2)2. (4.2

elasticity in biaxial gels with vanishing stress up to critical ) B )

values of the strain. We will not treat these properties inTerms in gradients o should also be included, but they do

detail here. not affect the present mean-field discussion, and we will
therefore ignore them here. The most general local energy
IV. NEMATIC GELS: STRAIN AND coupling strain toQ;; can be constructed from products of
ORIENTATIONAL ORDER terms invariant under arbitrary rotations in b&k and Sy,

H n m n m,

In this section we extend our formulation of the model ofv;/]hose general florm IS ﬂlfg 1le"'l=’ PQ p]h' N(;]te that
anisotropic gels to include both the elastic and orientationa‘i edse teans involve cogp;m_gs etwedeglﬂk(rat etr t afmii)
(nematig¢ degrees of freedom. We first consider a “soft-spin” ﬁl?e Sitje'nss;:ilrﬁg?i} o(te;(tli?) 23”;:Tt)’u?|ri]ke IaesléglarraSr? d(;rDms
theory in which orientational order is described by rotations inSg. To keep our discussion simple, we Wi||RfOI’
symmetric-traceless nematic order param@gr, which has h i j id po le f ; Pie,
both uniaxial and biaxial components. This theory, which can e moment consider a simple form fog -
describe both isotropic and anisotropic phases of gels and the ) ~
transitions between them, takes explicit account of the cou- fo=—sTruTrQ*—2tTryQ, (4.3
pling between strain an@;; . It can be viewed as a theory in _
which the familiar isotropic-nematic transition characterizedwhere v; =uvj; —%5ijvkk is the symmetric-traceless part of
by ordering ofQ;; induces elastic distortion. Guided by the v;; and where we used the fact thau®Try. This energy
underlying rotational symmetry of the nematic gel, we thencaptures the important qualitative features of strain-
develop a complementary “hard-spin” model of nematic gelsorientational coupling, namely, that the development of ori-
valid deep in the nematically ordered phase. This theory igntational order will drive an anisotropic distortion and a
formulated in terms of the strain and the nematic direator smaller change in volume.
alone, with all “massive” modede.g., magnitude of the An elastic energyf that is a function of strain alone can
uniaxial orderS and biaxial fluctuationsintegrated out. A be obtained by integratin@ out of the total free energy of
common feature of these complementary models is their inEq. (4.1). The leading-order correction of this operatiorf tp
variance with respect to global simultaneous rotations ofg _2(t2/r(’?)Tr'az_ Thusf, has exactly the same form as Eq.
strain and nematic order. This invariance leads to gaugelik@z_m, with u replaced byu'=u—(2t%/rL). Clearly, u’
qoqplings between strain gnd nematic order, whos_e harmon'@ecreases and passes through zero(’?ade%reases and the
limit reduces to those derived by le.StEm] following de I-N transition is approached from the isotropic phase. Thus,
Genne{6]. However, our expression in terms of andn the decrease ip in the models of Sec. Il arises from insta-

;oervthegloballylnvarlant energy deep in the nematic phase Spilities toward the development of nematic orientational or-
' der.

To treat the effects of strain-orientational coupling after
the transition to the nematic state occurs, it is useful to recast
In the preceding section, we investigated a model inf in a slightly different form,
which an isotropic elastic medium undergoes a spontaneous
anisotropic distortion triggered by the fall of its shear modu- f_o=3B[Tru—(s/B)TrQ?]?+ uTr{v— (t/x) Q1%+ fq,
lus below a critical value. In liquid-crystal elastomers, the (4.4)
reduction in the shear modulus and the elastic distortion that
it leads to are actually driven by the underlying isotropic-where

A. Simple model of thel -N transition
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SYMMETRIES AND ELASTICITY OF NEMATIC GELS
fo=3roTrQ?—wsTrQ3+w,(TrQ?)? (4.5

with ro=ro—2(t%n) andw,=w,—(s°/2B). This free en-
ergy leads to the equations of state

=B[Tru—(s/B)TrQ?]=0,

0Tru
of ~
—— = plo;;— (/) Q;]1=0, (4.6)
(91)”'
of  dfg - B TrO2 - /
5Q|J - 9Qj; —S[Tru—(s/B)TrQ71Qy; — 2t wij — (/1) Qyj]
=0. @7

The uniaxial solutions to these equations are given by

S 2
TrgongrQO, (4.83
v,J QIJ , (4.8b
Qﬂ:5(n0in01_%5ij), (4.89
with S satisfying
roS—w;S?+5w,S*=0. (4.9

Using these uniaxial solutions E@L.8) in the new stretched
state, we find

S 2t
Ao =1t55S3,S
A2 =1+ffs2+4—1£s (4.10
oll 9B” "3u” '

Note thatA§—A§,
parameteiS

As discussed in Appendix A, fluctuations away from the
equilibrium state are conveniently treated with the introduc-
tion of a complete set of five orthonormal symmetric-

traceless matricek satlsfylngI,Jlﬁ 5“ﬁ that allow us to
OQa and v i

expand Q,J and vj; as Q;=
—Ea oValij - Expressions foQ,, andv in terms ofQj; and
vij, respectively, are given in EqSAZ) In particular,Qq
=/2/3S measures the magnitude of uniaxial ord®s, and

=2(t/w)Sis linear in the nematic order

PHYSICAL REVIEW E66, 011702 (2002

8fe-q=3B[Tréu— (4s/3B)SsS]?

+ [ dvo— (t/ w)\2/35S)?

4
“ﬂ; [vo— (t/1)Q,]2

+3A1(89)2+3A[QI+ Q3] (4.1D)
whereA; andA, are given in Eqs(A6). Rotational invari-
ance offy guarantees that tern@®j3~ Q7, and Q;~Q7, do

not appear in the nematic state. We can integrate out the
“massive” longitudinal modesS and biaxial mode€); and

Q- to obtain

8, =1B1( 60,2+ Byov, A Svyyt+ ovyy)
+3B3( 80+ Svyy)?
+By( vt Svgy+2607)
+2u([ 8uy,— (t/ 1) Qy,?

+[5Uyz_(t//")Qyz]2)v (4.12
where the coefficientB, are evaluated in Appendix C. This
free energy is manifestly invariant under arbitrary rotations
in Sg because it is a function of the straify only. However,

its invariance in thes; is restricted to infinitesimal rotations
in O7 because we only used the harmonic free energy to
integrate over “massive” modes. Because underlyhgin-
variance of the nematic state forbids “massive” term€ig,
and Q,,, integration over them also eliminates straing
andv,, from the resulting elastic free energy, which, as an-
ticipated takes the form identical to that in E§.13. Such
symmetry-enforced vanishing of an elastic constérdre
Cs) is mathematically closely related to the well-known
Anderson-Higgs mechanism in gauge theofits).

The terms involvingQ,, andQ,, are interesting because
they determine the energy cost of rotating the director away
from the direction of uniaxial stretch. When we convert to
the strain variables of the stretched state using(Eg9 and
the expressions, E@4.10, for Ao, andAg in terms ofS
we obtain to lowest order idn=n—ng,

N__ 2
fgln_ %Cl 77,Szz+ Camsz4 77,Sxx+ 7/Syy)

2 2
+ %Cs( 77/Sxx+ 77’Syy)2+ Ca( 77,S><><+ 77,Syy+ 277$xy)

+ %wagy [ 750 B(ONa— 7a,a) 1% (4.13
where
(-1
=D (4.14

Q, measure the two independent components of biaxial or-
der, andQ; and Q, describe rotations of the direction of and elastic constants, are related to the constanﬁl via

uniaxial order. In terms of these variables, we have, to harC1—A0HBl, C,= AOHAOLBL C3=Ag, Bz, C,=AG, By,

monic order indv;; and 6Q;; ,

andu’=(r+1)?A4 oL M- The form of this energy is in fact the
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most geperal one, and we wiII_deriv_e it aga_in in the folloyv- Uﬁiznivije?a (4.18h
ing section after we have derived its nonlinear generaliza-
tion. It is exactly the form obtained by Olmstgt#] follow- vfb=eiavije,b. (4.189

ing de Gennef6] and Warner, Bladon, and Terentjg23]. It
shows clearly how the director can relax locally &m,  The components*” are invariant under rotations i be-

= Mazat B '7saz to eliminate any dependence of the free causeu;; is invariant underO by construction. They are
energy onzs,,, i.e., to makeCs=0. It is worth noting that  also invariant under simultaneous rotations of bRetand the

in the original treatment of de Gennfg, the coefficients of triad {e*} in Sy, i.e., they maintain their same numerical
(75,9° (u' or 4C4, in the notation of de Genngs value, under simultaneous rotations of, and the basis
7524 ONa— 15,9 (Bu' or Dy), and (n,— 77,325)2 (B’ or {e".¢.n}.

D,) were treated as independent coefficients, as indeed they A gel whose anisotropic state forms via spontaneous sym-
are in a general system cross-linked in the nematic phasegetry breaking from the isotropic phase has no preferred or
Olmsted[14] derived the relation®,/u' =28 andD,/u’ imposed directions, and the elastic free energy will depend
= j? for the rotationally invariant neoclassical model of rub-only on v, v, and vﬁi. Furthermore, this free energy
ber elasticity. These relations, which are required by rotacannot depend on the arbitrary choice of the vecedrand

tional invariance, emerge naturally from our treatment. € in the plane perpendicular o, and it will be a function
only of v#” in the combinationsy, vi?, vfj, v}, , and
B. Theory with strain and director v2% 2. Since linear terms proportional to, and v3* are

We have just seen how the development of nematic Orde[r)resent. n .the amsgtrqpm phage;LLt W'.” be characterized by a
nonvanishing equilibrium straimg” with components,

characterized by;; leads to a stretched nematic elastomer ab e _ . Sl
with a soft elasticity. The formulation in terms Qf; is well andog, . If the equilibrium director is1,, then such a uniaxi-

suited to a description of the transition from the isotropic todlly distorted state is characterized by the equilibrium strain

the nematic state. Deep in the nematic phase, the theory that
best captures the effects of long-wavelength strains and
variations in the direction of nematic order is one expressed —1[G; (Ng) — 81 ] 4.19
in terms of strain and the nematic directoonly, i.e., one in 2L b '
which fluctuations inS and in the biaxial part ofQ;; are (A2 _ (A2 _
integrated out. This theory, like others we have (JJIiscusseé\/herevOH (Agy=1)/2,vor =(Ao, ~1)/2 and
must be invariant under both rotations $§ and under si- Gij(n):AaninﬁAgi(&j_ninj)_ (4.20
multaneous rotations af;; andn in Sy.

To construct a fully rotationally invariant theory deep in  Away from equilibrium, the free energy can be expanded
the nematic phase, it is convenient to introduce a local coorin the deviations
dinate system defined by the orthonormal triget,e?,e?
=n} consisting of the local directer and two vectorg! and Sutr'=pH’ =g’ (4.21
€ perpendicular ton. These vectors satisfy

Vij = Uo||NoiNoj T VoL (ij — NoiNg;),

of the strain from its equilibrium value. To harmonic order in
et-e’'=6"", (4153  these deviations, we have
5f = 2 C W2+ Cow w2+ 2 Co(W?®)24 Cw2PwaP
S efet=si=s5,-nn;. (4.15 w= 72 CaWij+ CoW Wi 2 Co(WIT)™+ Cawi Wy
=12
é +CsWi, Wit (4.22
!n \_Nhat follows, we will adopt a notation in whigh _Greek where the rescaled invariant strains are
indicesu and v will run over 1 to 3, and Roman indices

andb will run from 1 to 2, i.e., over the subspace transverse W||=A6H2(U||_UOH)’
to n. The left strain tensop can always be expressed in
terms of its components in this basis: wab= A S2(p2P— p2b),
vii=vH’ef'e’, (4.16a — 5
ij 1 € Wi, =Ag “(vfL —vg)L), (4.23

— i+ 03Pl + 12 (n.e?+en.
SNy totere ol (mejrerny), (4160 i X2 (A2 1+ A2))/2. Obviously, we could define the

strains above without the prefactors. Our choice was made to
produce the simplest linearized energy, e.Gs(w?®)?
phr=eluyel, 417 —Ca(mxt myy)?. Without the AF, factor in the definition
of w3, the linearized theory would contain the term
and CaAg (myt 77§y)2 instead. Even though this free energy is
only an expansion about a uniaxially distorted equilibrium
v = Nviing, (4.18a  state, unlike the free energif=q. (3.13 ] expressed in terms

where
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of strain alone that we considered in Sec. lll, it is completelywhere

invariant with respect to arbitrary rotations both $ and

S

particular direction of n. If {e*}={€j}, then v§
=€hivoij€0j - Away from equilibrium defined byng, vj;

=vgi;+ ovj; Wherevy; is given by Eq.(4.19 and dv;; by

Eq. (3.26. Thus

Svh'=(ef'e] —ebeg)vgj +elduel,  (4.24

and we have

W\|=A6||2ni5vijnj_%[1_(1/”][1—(”' No)?]

~Noi 7{j Noj
=7} (4.253
wi= Ag 283 dvij+ 3(r—1)[1-(n-ng)?]
~35" 7,
=+ 773,/y1 (4.25b
WﬁLWﬁL=K64nink5ﬂiévij5vk|
+2,8K0_2(n no)nigl)ij 5f_kn0k
+B2(n-ng)?[1—(n-ng)?]
~2 [ BCoN = 7)1, (4.250

WEWEP= Ao * 81 85 8v i S+ (1 = 1)Nging; 814 31 vy
+3(r=1)’[1-(n-np)?]
~ 5iokL 5?& 77,Sij77,SkI

= e+ no+ 20, (4.259

where 8 is defined in Eq(4.14). The energysf,, is charac-
terized by the five elastic constan®, and the stretching

The equilibrium values o andvg? do not depend on the  ang finally

v

V=3[A'G(ng)A =G(n)], (4.29
o) =AgfmVin;,
wad= A(;f(siijvij ,
wil, Wi, =Ag *mined i Vi Vi,
wiWEP= Ao 873 85 Vi Vi - (4.30

C. Cross-linking in the nematic phase

If an elastomer is cross linked in the nematic rather than
the isotropic phase, the memory of the anisotropy of the
state, with a uniaxial direction,, at the time of cross-linking
is locked in, and fullOg invariance ofSy is reduced down to
D.., symmetry. If coupling to nematic order is turned off, the
system will be characterized by a uniaxial elastic energy of
the form of Eq.(2.19 with five elastic constants in general.
(Turning off this coupling is not as unphysical as it may
seem. This is precisely what is done in treatments of plastic
crystals consisting of anisotropic molecules suchNga$ This
part of the elastic energy is a function@f and is invariant
under rotations irS; . It is also invariant under simultaneous
rotations ofny andx in Sg and under operations oqin D,
at fixedny. Couplings to the nematic order paramefemust

be invariant under simultaneous rotationsR)find(_j in Sy
and under simultaneous rotations fand ny in Sz. The
simplest couplings linear i@ are of the form
fe=—-TrAhATQ—28TryQ, (4.3)
whereh;; =hngng; and, as beforepA A= §+2y. The first
term in this energy reduces tehng;Q;;ny; and favors align-
ment of principal axes oQ alongn, in the absence of de-

formation, when the deformation tensgris the unit tensor.
The generalization of Eq4.22 to systems cross-linked

in the nematic phase is fairly complicated. It cannot be ex-

pressed in terms of the straifv;; alone; it can only be ex-

ratior, which has the same value in every one of the nonlinpressed in terms of the more fundamental nonsymmetrized

ear strains.

strainsz;; . However, the major effect of cross-linking in the

Alternative but equivalent expressions for the strains innematic phase is to to makg a preferred direction with an
Eq. (4.23 are useful and elegant. The components of thesnergy cost to rotate away from that direction, which can be

equilibrium straing /" have the same value if the ba§eg}
is transformed to the bas{®*} provided the directon, in
Gij(no) [Eq. (4.20] is transformed ta. Thus we have

vh"=3[e5Gij(no)eg;— 6*"1=3[el'Gjj(n)ef — 6],

(4.26
and from Eqgs(2.7), (3.8), and(4.17)
vA'=3[ef'AjGj(no) Aylef — 8], (4.27)
From this we obtain
Sutr=el'V;el, (4.28

described by the addition of a termh(ny-n)? to Eq.(4.22
to lowest order inz;; [55].

V. NEOCLASSICAL THEORY OF ELASTOMERS

So far we have described liquid-crystal gels in terms of
nonlinear strains, rotationally invariant in eith®g or in Sy,
relative to some equilibrium reference state, and we have
focused on those properties that result from the spontaneous
broken rotational symmetry of the nematic state. We have
treated the elastic constants in our model free energy as phe-
nomenological parameters to be determined experimentally.
To date, experimental realization of liquid-crystalline elas-
tomers are cross-linked liquid-crystalline polymers. They are
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rubbers with orientational degrees of freedom of a liquidapproach in which there is an energy cost, measured by a

crystal, and their elastic properties over a very wide range ofompression moduluB, , arising from deviations of det,

strains can be described quantitatively by a generalization dfom 1:

the classic theory of rubber elasticit21]. This is a semim-

icroscopic theory in which the origin of shear moduli is the fg=3B,(detA,—1)%. (5.9

reduction of entropy arising from constraining polymers to ] o

pass through cross-linking points. In this section, we willOur complete neoclassical energy density is tHust,

show that this theory, when expressed in terms of nonlineat fs - ) ) ) )

strains, is equivalent to those discussed in preceding sections An important feature of this model is that it depends on

of this article. A, only via the combination}rg(,/:\rT because the determi-
In the simplest version of the neoclassical theory, polymenant of a product of tensors is the product of the determi-

segments between cross links are viewed as independenants. Thus, it is convenient to analyze this model in terms of

random-coil polymers of length. In the anisotropic envi- A=A g3, the strain tensor relative to the isotropic state

ronment induced by the nematic order, the effective stepbtained by rescaling lengths \@é/z [56]. Our model is thus

lengths parallel and perpendicular to the direction of nematic -

order are different, and mean-square end-to-end displace- f=2nT(lo/)TrAATg Y+ 3nTIngyg !

ment is characterized by an anisotropic step-length tensor, S = ==

+3B,[(detA A T/detg,)Y2— 117, (5.5

I=Ig, (5.1)

[[{e}

wheren is the volume density of chain segments.
wherel is a length andy is a unitless tensor, reflecting sys- We will now analyze two versions of this model: one
tem anisotropy, whose form will be discussed in different@Ppropriate to the description of theN transition and one
contexts below. The probability that the two ends of a single2Ppropriate to systems deep in the nematic phase. We begin

chain are separated 1 is with the I-N transition. In this case, we take
etl 3 g t=0-eQ,
P(R)=| —— exp( - —Ri+ij1Rj>. (5.2)
(2mLI3) 2L go=(8-aQq) *, (5.6

The free energy per chain i&nqn=—TINP(R). Now as-  \hereQy is the value ofQ at the time of cross-linking. We
sume that the separatiéd was produced by an affine trans- ¢ould have takewy rather tharg™* proportional toQ. Since
formation from some initial state with separatiély such we are interested in smaf, there is little difference be-

that Rj=A,i;Ro;, whereA, is the deformation tensor rela- _ = . .
R = tween the two choices. Our goal is to rechist terms of the

tive to the initial state(Later we will introduce a new refer- lof . btain a f f the fE
ence state and use the symhbblto denote deformations eft strain tens_or__z to_o t_aln afree energy o L e form of =g
(4.1). We begin by finding the equilibrium strain tensdp

relative to that statgThe free energy per chain of the entire ) ) .

elastomer is them,,i{Rg) averaged over all separatioRg whengzo. Since there is no anisotropy wh@:O, we
of the initial state, which we assume consists of randomhave Ao=Ad;; . A straightforward minimization of with
walk chain segments characterized by a step-length tensé@spect todg whenQ=0 yields the equation of state
1o=100p and a probability distribution given by E¢5.2)
with | replaced byl,. The initial state may be viewed as the
state at the time of cross-linking. Thus, if the system is cross- . . .
linked in the isotropic statd, will be an isotropic tensor; if whereyoz(detz}oégldetgo)l’? In the incompressible limit
it is cross-linked in the nematic state at some temperafure Br—, this yields Ao=(detgo)¥2 Setting AAT=AF(5
the degree of anisotropy ¢f will reflect the degree of nem- +2y) and expanding in powers ofy using

atic order at that temperature. The free energy density rela- )

tive to the initial state is thus det’{ 5+2v]=exd 3 Trin(1+2v)]

NTA5+B(vo—1)%0=0, (5.7

fer=3nT(TrA oAl "1=Indetlol 1), (5.3 =1+Trg—[Tre?~3(Try)®]+---, (5.9

wheren is the volume density of chain segments. This purelyWe obtain
entropic free energy, whose ground state is the collapsed

state withA, =0, cannot alone provide a complete descrip- of = uTro?+3B(Try)*~ auTryQ—3znTTrIn(9 - aQ)
tion of the elastic properties of an elastomer. It must be (5.9
supplemented with some treatment of the short-range enthal- . . 9
pic forces that prevent collapse to infinite density. Merely™© hagmonlc order iny, where u=nT(lo/I)A5 and B
imposing the incompressibility constraint, det=1, is suf- = BrYo— #- This energy is identical tb¢+fc of Eq. (4.1)
ficient to provide a very good description of dense, nearlyPlus & part depending o@ alone, which can be absorbed
incompressible systems. We will take a phenomenologicainto f, [Eq. (4.2)]. The strain can be integrated out to yield
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general,li}l depends on the full tensor order paramedgr
=S(ninj—%5ij)+Bij where Bj; is the biaxial part ofQ;;
with components in the plane perpendiculant®eep in the
nematic phase, fluctuationtS in the magnitude oSand in
Bj; are small. The most general form Itij-f1 to lowest order
in 8S andB;; is

5f =~ £a?nT[(Io/) AZ—1)]Tr Q2+ 0(Q%)

1
~ — ZaznT

1,1

nT )
+€(1 T l—E TI’?O (5.10

TrQ2.
. . . . . lﬁlzlll[aij+(r_l_1)ninj
The final form of this equation was obtained by solving the
equation of stat¢Eq. (5.7)] for A, to lowest order imT/B
and o?. In the incompressible limitg=«) whenlq/I=1, ) )
there is no shift in the coefficient of @? and, thus, no shift Wherea andb are numbers. The nematic energy has contri-
in the limit of metastability of the isotropic phase when the butions 3A,(6S)+ 3A;TrB?, whereA; and A, are given,
system is cross-linked in the isotropic phase, but there is EeSpectively, within Landau—de Gennes mean-field theory by
small shift proportional to T2 when it is cross-linked in the ~ E-(AB), in addition to the Frank free energy. Integrating out
nematic phas€58]. If the system is compressiblB# %, or oS and Bj; from the total free energy will yield an elastic

. ab a . . . .
if the fundamental step lengthg and | are different, then ~€nergy inw;;, wi*, andwj;, with five independent elastic
there is a shift in the coefficient of @2 even when the constants, whose calculation we leave to the reader. The rela-

system is cross-linked in the isotropic phase. tive importance of fluctuations idS and Bj; depends, of
Deep in the nematic phase, biaxial fluctuations are suptourse, on the ratio oh; to A,. In the Landau—de Gennes

pressed. If we assume they are completely frozen out, thefodel discussed in AppendixA, /A, <1 near the transition

the step-length tensor depends only on the director, and wiom the isotropic to the nematic phase, Byt/A,>1 when

+asds(nin;—38;)+bBy], (5.149

can take

It =108+ (= Dning] (5.1
andlgi;=lo. [ 6+ (r—1)nging;], wherer=1,/1, . Sincelq
has been scaled away by the transformation fibmto A,
the equilibrium strain\ , for a givenn will have components
parallel and perpendicular toand will have the form of Eq.
(3.2b with ng; replaced byn; . As n rotates so doed o, but
the magnitudes\q| and Ay, do not change. Settingy =0
and minimizing overA, we find the equations of state

lo, 1
T AG+B(7%0—1)%=0,

lo,
TA(Z)N'Br(Yo—l)Yo:O-

nT (5.12

These equations imphx§/Ag, =r=1, /I, forall B, . Using
det(§+ 2vo+28v) =detA A jdet(3+ Ay *duA,t) and ex-
panding indy, we obtain

8oy = (Wi WEPWE®) + 3B(w) + w32+ 2 wi, Wi,

(5.13
where u=nT(lo, /lg)AS, , B=B,y5—u, and u’' =5 u(2

+r+r~1). This is identical to Eq.(3.13 with C,=B
+2u, C,=B, C3=B, Cy=p andCs=2u".

The free energyf,, of Eq.(5.13 has a higher symmetry

than the most general free energf,, of Eq. (4.22: it has

|rQ|>w§/w4 deep in the nematic phase. Thus, though both
fluctuations are suppressed deep in the nematic phase, fluc-
tuations in8S are suppressed more than biaxial fluctuations.

Crosslinking in the nematic phase

There is no qualitative distinction in the simple neoclas-
sical theory between cross-linking in the nematic and isotro-
pic phases. In both cases, the equilibrium phase exhibits the
soft-elasticity characteristic of spontaneous breaking of the
rotational symmetry of the isotropic state. Thus, additional
physics must be added to the simple neoclassical model to
produce the expected memory of the anisotropy of the nem-
atic state at cross-linking and the concomitant destruction of
soft elasticity. There are a number of mechanisms that will
produce this memory. For the purposes of illustration, we
will consider here only a simple model studied by Verwey
and Warner[36] in which soft elasticity is destroyed via
randomness in the sequence of rigid and flexible units along
polymer chain segments. The free energy of this model re-
duces as expected to the general form discussed in Sec. IV C.

The sequence randomness along the chain causes the cou-
pling parameter to be a random variable with average)
and variance (5a)?). The chain energyEq. (5.3)]] must be
averaged over, which appears in botg andgg. This av-

erage(ignoring the de;OI;l termg is
(faw=2nT(o/DTrALG0) A (g™ )+ 8Fen, (5.19

where

only three rather than the five independent elastic constants.

As a result, certain distortions will have the same energy in fcn=3(lo/DNTTr [(A goA g™~ A(go)AT(g™ )]
the model that do not have the same energy in the most o ) )
general model. For example, purely dilational and compres- (5.16
sional strains withA,, and A ,, interchanged will have the

~=3nT(lo/D{(8)*)TrA,QoA[ Q.

same energy if,, but not in &f,,. The simplified form of
Eq. (5.13 resulted from our use of Ed5.11) for Iijl. In

We can now proceed as before. Lz=te¢=z=\<go)*l’2 express
A in terms ofy, and expand in powers i@,. The result is
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(fen=—Uo/HNT(a)TruQ A connection of liquid-crystal gels to a large body of work
o on closely related systems of conventional liquid crystals
—3NT((8a)®)TrA(go) "QuA(gp)Q+- - - . confined inrigid gels, such as the aeroddll,31,33, natu-

rally leads to an important general question: What role does
(5.17) gel elasticity play in determining the properties and stability
of liquid-crystal phases confined insidlexible (as opposed
9 aerogels heterogeneous gels such as aerofils,12)?

ith the elastic formulation presented here we plan to ad-
dress this question in a future publication.

Finally, the presented description is also natural for treat-

VI. CONCLUSIONS AND FUTURE DIRECTIONS ment of fluctuating nematic elastomer membrar$],

In this mostly pedagogical paper we have formulated é/vhich constitute a new universality cl_ass of mgmbranes, add-
classical elasticity theory of nematic liquid-crystal gels, care/nd to the well-studied classes of fluid, hexatic, and crystal-
fully incorporating all underlying symmetries and emphasiz-'in® membranef25]. In addition to the richness exhibited by
ing the distinction between independent target and referendB0S€ Systéms, we expect new physics associated with the
space rotational symmetries. Our formulation leads to dNt€rplay of the in-plane and undulation nonlinear elasticity,
straightforward demonstration of the soft elasticity of POth expected to be important in elastomer membrg2@ls
nematic-gel phases that form via spontaneous symmet inally, such m-plane_ on_entanonal_ly orde_red elastic mem-
breaking from an isotropic gel. This soft elasticity is charac-Pranes are novel realizations of anisotropic membranes, pre-
terized by the symmetry-enforced vanishing of a sheaflicted to exhibit flat, tubule, and crumpled phapég], sub-
modulus and vanishing stress up to critical values of theéduently observed in Monte Carlo simulati6g]. We plan
appropriately applied strain. These and other predictions thdP_ €xplore these and other phenomena and realizations of
emerge from our formulation are consistent with earlier pre_orlentatlonally ordered elastomers in future publications
dictions of the neoclassical liquid-crystal rubber theory 26].

[5—8], which had been very successful in explaining many
beautiful experiments on liquid-crystal elastomers. ACKNOWLEDGMENTS
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lestericg, columnar phases of fluid liquid crystals, and ten-

This energy is identical to Eq4.31) which we expected on
general grounds. In the absence of strain, the second term
this equation tends to align the principal axis@falong Q.

sionless membranes, where rotational symmeicgrre- APPENDIX A: REVIEW OF NEMATIC ENERGY
sponding to an arbitrary choice of smectic layers, columns, _ _ _ _
and membrane normal orientationsimilarly enforces the In this appendix, we will review standard treatments of

vanishing of specific elastic moduli. This connection allowsthe isotropic-to-nematic transition, principally to establish
us to carry over much of the insight from those systems tdotation. We introduce a complete set of orthonormal
gels. For example it seems likely that the buckling instabilitysymmetric-traceless tensalr$ satisfying Tt P= 5P

[57] in smectic liquid crystals under extensional strain paral-

lel to layer normals will provide insight into the stripe insta- 5 -z 0 0 0 O
0_
\[3 0

1
0 -1 0
0O 0 O

bility [19] of a nematic elastomer subjected to extensional
strain perpendicular to its anisotropy axis or to the as yet =
unstudied generalization of this phenomenon to compres- 0 0
sional strain parallel to the anisotropy axis.

Our formulation also permits a straightforward incorpora-
tion of a variety of important effects such as spatial varia- |2
tions due, e.g., to boundary conditions, ever present thermal B
fluctuationg 59|, and local gel heterogeneitg1,32, thereby
allowing a full statistical-mechanical treatment of nematic 0 0
elastomers. Again, experience with smecfi8§,32,59, co- 1
lumnar phase$31,32 of conventional liquid crystals, and 0
the flat phase of tensionless elastic membrafs-54 V2 01 0
strongly suggests that the latter two effects will qualitatively
modify long scales elastic properties of nematically orderedAny symmetric-traceless tensor can be expressed as a linear
gels, leading to phenomena such as, for example, anomalogsmbination of these matrice®;; =Ei:0Qalﬁ , whereQ,
elasticity, negative Poisson ratio, and topological glass order=TrQ| “. Thus,

I'=

1
N

o » O

ol -

(A1)

011702-18



SYMMETRIES AND ELASTICITY OF NEMATIC GELS PHYSICAL REVIEW E66, 011702 (2002

1 1. Eulerian elasticity

1
Qo= \/g Qzz— E(QxxJr Qu) |, Q1= \/E(Qxx_ Qyy) In Eulerian elasticity, the displacement fiel¢x) is a vec-
tor field in three space. Like all vector fields that transform

_ _ _ under the same group as space itselfransforms under a
Q2 \/EQXV’ Qs=12Qu Qu \/EQVZ' (A2) rotation of the whole sample as

With n® along thez axis, 1] =3/Znnd—(1/3)5;]. In U (x)=Uu(x)U 1= 0u(0 " ), (B1)
uniaxial nematic phas®;) = S[nn{— (1/3)8;;]=Qyl |} and _ _ _
Qo= J2/3S. The Landau—de Gennes free energy for a nemwhere U is a rotation operatofe.g., quantum mechanical

atic is operatoy and O is its associated three-dimensional rotation
matrix. Here the prime indicates the value of the field after
fo=3roTrQ*—w3TrQ3+w,(TrQ?)?, the rotation operator is applied. To leave the system un-
) ) ) changedU must be an operation in the point group of the
2 . . . .
— 1y E Q% +w E Q2 crystal. In the Eulerian picturey(x) is a Goldstone field
27Q& o T T & Xa associated with the broken spatial symmetry of a crystal.

Thus, strictly speaking, the highest-symmetry point group in
1./2A3 3 2. A2y 14/3 2. A2 three dimensions in the cubic group. To make contact with
—W3[3V5Qo— V3 +Q3)+3Vs3 +
Wsl 2 \/;QO \/:QO(Ql Q2)+2 \/:QO(Q?’ QW] our discussion of gels, we can, however, imagine a system in
1 which all rotations are in the point group. Singés a vector
——=w3[3Q1(Q5— Q) +6Q2Q3Q4]. (A3)  field, g;u; is a tensor field that satisfies

242

Minimization with respect t@, yields the equation of state
wherex'=0"1x, 9/ =dlax/ , and as before the prime indi-
roQo+ 4w,Q3- \/gw3QS=0. (A4)  cates th_e value of the operator after rotation. Alternatively,
we can introduce

(aup)’ () =Udgu;U~t=Oydpu(x )0, (B2

Then expansion to second order in deviatiof®,=Q,

~Q? yields 7ij=djui, (B3)
8f =3A1(89)*+3A2(Qi+Q)), (A5)  Which
where 17’=(=)Z;(=)‘1. (B4)
A1=§(rQ+ 8w,S?—2w,S), Scalars created frony or from u and its derivatives are

invariant undeJ. For example,
i =dilUi, i Vji s (B5)
As anticipated from the underlying rotational invariance,

there are no terms proportional 883 or 5Q3. etc., are scalars under. _ _
The above symmetries and considerations applarng

vector field. The displacement field, however, has addi-

tional properties arising from the fact that it is a Goldstone

field. In particular, the system is invariant under rotation of
It is often the case that a linearized theory of elasticity, inthe mass-density wave crystathich is not the same thing

which nonlinear strains are replaced by their linearized limitsas rotating the whole sampleThe transformation

and only terms to harmonic order in these linearized strains

are included in the free energy, provides an adequate descrip- X=U(X)—=O[x=u(x)] (B6)

tion of elastic distortions. It is, therefore, interesting to see .

how this linearized limit is reached. It turns out that this limit "0t&t€S the crystal. Thus, the transformation

can be taken more cleanly in the Eulerian picture in which i) — _

the displacement field is a part of the phase of a mass-density u—u'(x) Olx—u(x)]+x B7

wave rather than the Lagrangian picture in whigx) is @ goes not change the energy of the system. This implies that

displacement relative to a reference configuration. For a furihe elastic energy will depend only on the Eulerymmme-
ther discussion of these two pictures of elasticity, see Refyized strain,

[16]. Much of our intuition about how to construct a linear-

APPENDIX B: LINEARIZED LIMITS OF EULERIAN AND
LAGRANGIAN ELASTICITY

ized theory comes from the Eulerian picture in which the UiEj:5in+(9in—f7iUkﬁjUk*f9in+t9iuj, (B8)
displacement field is a vector field in space that obeys the

usual rules of transformation of vector fields. In this Appen- ~aqu;+au;, (B9)
dix, we will discuss the linearized limits of Eulerian and

Lagrangian elasticities. where the final form is its harmonic limit.
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Thus, we have two symmetried) symmetries associated language.We can, however, as discussed above, use them
with rotation of the whole sample, an(@) rotations of the fruitfully in the Eulerian language. However, once we have
lattice. Invariance with respect to the first requires that theconstructed a rotationally invariant Lagrangian energy, we
energy depend only on scalars formed by contracting indicesan replace nonlinear strains by linearized ones to discuss
of both gradients andi’s. The second invariance requires harmonic elastic fluctuations.
that the energy be a function only of the nonlinear stuﬁn
The interesting thing is thdioth Lﬁ and its linearized form APPENDIX C: EVALUATION OF B,
transform like tensors undédd), i.e., underO. Thus, con-

tracted tensors of eitherF or its linearized form are scalars _ [N this appendix, we outline the algebraic steps between
undero. B Egs.(4.11 and(4.12. We need to integrate ovéS andQ;

andQ,. Since these variables appear only to quadratic order,

2. Lagrangian elasticity the integration is trivial and yields

In Lagrangian elasticity, there are as we have discussed . 2 2 2 2
two symmetries(1) rotationsO+ in the target space an@) Of -, =2Ba(Trou)“+ ua(vi+v3) + podvg— ydvoTroy,
rotation Og in the reference space. Under these operations, (C1)
the displacement vector satisfies

where
R’(x)=07R(QrX). (B10)
1682S?
Under infinitesimal rotations, B;=B- oA’
Or1ij= 8ij * €ijx b1k, (B11
S
Orij= 6ij t+ €ijk Ork: (B12 Kom Ao
and
_ HAZ
diuj = i uj+ €jp(Orp— Orp) + €ikpdiUj Orp— €kjpd] Ukbrp. K= a2t )
(B13)
The energy is invariant under independent rotations through 2\32gtg
s and 67. As we have seen, these invariances are guaran- r=-43 (C2
teed by making the free energy a function only of the fully
contractedu;; or v; tensors.
Now, let us look at the linearized limit. Under both rota- Where
tions, we have
A=A il s? 3t C3
l?iuj,+(9]'Ui,:ai’Uj‘FO-'j,Ui‘F(Eikp&((Uj‘f‘Ejkp07|’(Ui)0Rp - 1+E +7' ( )

— (€rind U+ €rind Uy) O1p . B14 . .
(€kjpdi Ut €xipd; Uk Orp (B14) Setting U= (vt dvyy+ dv,,), replacingvy, vy, and

Note that to leading order inand, this symmetrized com- V2 With expressions obtained from Eq&2) (with the tensor
bination is independent o and #; as it should be. The @ replaced bysy) and including thebv ,— (t/u) 6Q, with
terms of ordergu tell us about the tensorial rotation proper- @= 3,4 terms in Eq(4.11, we obtain Eq(4.12 with

ties of the system. Ig= 6= 0, then the symmetrized com-

bination uﬁ=(9iuj+(9jui transforms like a tensor, i.e., _ 4 2
B1=B:+ §M0_2 37
u'S=ouso ™. (B15)
The linearized straiw® does not, however, transform like a — 2 1 \F
tensor under independent rotatiosis and 6. If, for ex- Bo=Bo— 30T 5 V3Y

ample,fg is zero, the term proportional to the produiggu,

in the transformation ogs depends on both the symmetric

and antisymmetric parts ofiuj. Only the fully nonlinear = 1 \F

strainsu;; andv;; transform like tensors even to linear order Bs=Bi—mat gmot \ 37,

in O or 6. We leave it as an exercise to verify this explic-

itly. Thus, we cannot use the linearized tensors to discuss the o

rotation and tensorial properties of strains in the Lagrangian Bs=pus. (C49
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