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Symmetries and elasticity of nematic gels
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A nematic liquid-crystal gel is a macroscopically homogeneous elastic medium with the rotational symmetry
of a nematic liquid crystal. In this paper, we develop a general approach to the study of these gels that
incorporates all underlying symmetries. After reviewing traditional elasticity and clarifying the role of broken
rotational symmetries in both the reference space of points in the undistorted medium and the target space into
which these points are mapped, we explore the unusual properties of nematic gels from a number of perspec-
tives. We show how symmetries of nematic gels formed via spontaneous symmetry breaking from an isotropic
gel enforce soft elastic response characterized by the vanishing of a shear modulus and the vanishing of stress
up to a critical value of strain along certain directions. We also study the phase transition from isotropic to
nematic gels. In addition to being fully consistent with approaches to nematic gels based on rubber elasticity,
our description has the important advantages of being independent of a microscopic model, of emphasizing and
clarifying the role of broken symmetries in determining elastic response, and of permitting easy incorporation
of spatial variations, thermal fluctuations, and gel heterogeneity, thereby allowing a full statistical-mechanical
treatment of these materials.
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I. INTRODUCTION

The term liquid crystal@1,2# has traditionally been used t
describe phases of matter that exhibit anisotropies chara
istic of crystals but that under appropriate conditions fl
like a liquid. These phases typically have symmetries in
mediate between that of a homogeneous isotropic fluid
that of a three-dimensional periodic crystalline solid. Inde
one can provide an almost complete characterization o
liquid-crystalline phase by specifying its symmetry. For e
ample, the nematic phase, which is spatially homogene
yet optically uniaxial hasD`h symmetry. The typical phas
sequence for a thermotropic liquid crystal on cooling beg
with an isotropic fluid and ends with a crystalline solid aft
passing through nematic, layered smectic-A and smectic-C,
and possibly hexatic phases.

There is, however, a large variety of materials that ha
the same macroscopic symmetry as fluids, but that can
flow: they are macroscopically homogeneous and isotro
elastic media with a nonvanishing shear modulus that p
vides resistance to shear distortions. We will refer to th
materials, which include everything from glasses to el
tomers or rubbers@3#, as gels@4#. One can imagine phase
arising from a reference state of agel ~rather than a liquid!
with the same macroscopic symmetries as conventional
uid crystals. As we shall discuss more fully below, the
phases do, in fact, exist@5–12#, and, because they cann
flow, they have mechanical properties and mode structu
that differ significantly from those of standard liquid crysta
We will call these phases ‘‘liquid-crystal gels’’ because th
are gels with the symmetry of conventional~fluid! liquid
crystals. In this paper, we will develop a powerful and ge
eral formalism to describe nematic gels and use it to exp
their remarkable properties. We will focus particularly o
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nematic gels that form via spontaneous orientational sym
try breaking from an isotropic gel phase. Our formalism c
be generalized to treat other liquid-crystalline gel phases

There are a large number of experimental realizations
liquid-crystal gels. Of particular interest to us are liqui
crystal elastomers@5–8#. These materials, which are forme
by weakly cross linking either sidechain@5# or main-chain
@9# polymers, combine the enormous extensibility of rubb
with the orientational properties of liquid crystals. They a
therefore, of considerable technological importance. The
istence of the rubbery cross-linked network appears to h
relatively little effect on liquid-crystalline phase behavio
and the standard thermotropic nematic, cholesteric, sme
A, and smectic-C phases have their elastomeric counterpa
@8,13#. The elastic properties of these phases do, howe
crucially depend on whether a given liquid-crystalline ord
was established before or after crosslinking. Liquid-crys
gels can also be prepared in other ways, for example,
polymerization of monomer solutes in a liquid-crystallin
solvent@10#, or by confining conventional liquid crystal in
side a dilute flexible matrix such as aerosil@11,12#.

To fully characterize liquid-crystal gel phases, tw
complementary basic questions must be addressed:~1! What
effect does liquid-crystal order have on the gelelasticity? ~2!
How does the rigidity of the underlying gel affect liquid
crystal order and its stability to fluctuations? Our primary
concern in this paper will be with question~1! applied to
nematic gels. With regard to question~2!, gel elasticity of
weakly cross-linked elastomers has relatively little effect
the existence of liquid-crystalline phases. On the other ha
liquid-crystal elastomers appear experimentally to be m
strongly ordered than their fluid counterparts. For examp
unlike conventional nematics, which have a milky appe
ance because of strong fluctuations of the local anisotr
©2002 The American Physical Society02-1
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direction, elastomer nematics are clear, indicating suppre
fluctuations and orientational order extending beyond a
cron. This property directly and clearly follows from ou
model of nematic elastomer as well as from an early w
@14#, and it will be explored in more detail in a future pub
lication @15#.

The strong interplay between broken symmetry and
nature of long-wavelength excitations of ordered phases
major theme of physics@16#. Symmetry principles dictate
that ordered thermodynamic phases that break a contin
symmetry have low-energy distortions, or ‘‘soft’’ modes, th
are described by an elastic energy depending only on gr
ents of these Goldstone fields whose spatially uniform inc
ments take the system to symmetry-equivalent states.
form of this elastic free energy is uniquely determined by
properties of the reference phase whose symmetry is bro
and by the nature of the broken symmetry itself. Conv
tional nematic liquid crystals break the rotational isotropy
an isotropic homogeneous liquid, and they are character
by the Frank elastic free energy@1,2#, which is a functional
of the Goldstone fieldn, the Frank director specifying th
direction of molecular alignment. As illustrated in Fig.
nematic phases of liquid-crystal gels that form from an i
tropic gel state also spontaneously break rotational isotr
Their long-wavelength elastic energy, however, differs s
nificantly from the Frank free energy of conventional ne
atics because the reference gel state~unlike a reference fluid
state! has a nonvanishing shear modulus. The elastic dis
tions of a nematic gel and their coupling to the local anis
ropy direction were first considered by de Gennes@6#. Gol-
ubović and Lubensky~GL! @17# were the first to consider in
detail the unique properties of the elastic energy of a sp
taneously formed nematic gel in their study of a model i
tropic elastic medium that undergoes a phase transition
uniaxial state when its shear modulus becomes smaller th
critical value. They found that the Goldstone fields of

FIG. 1. A cartoon of a liquid-crystal gel undergoing a
isotropic-nematic transition, accompanied by a spontane
uniaxial distortion.
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uniaxial gel are displacement fields and that their associa
elastic energy is expressed as a function of standard str
of a solid. Normally, the elastic energy of a uniaxial elas
medium is characterized by five independent elastic c
stants. A nematic gel that forms spontaneously from an
tropic gel is significantly softer than a conventional uniax
solid: it is characterized by ‘‘soft’’ elasticity in which the
elastic constantC5 associated with shears in the plane co
taining the anisotropy axis vanishes and in which stress v
ishes up to critical values of certain shears@18–20#.

Many of the properties of nematic elastomers can be
plained by an elegant and remarkably simple extension@21#
of standard rubber elasticity@22# in which nematic order
leads to an anisotropic step-length tensor for random-fli
polymer segments between cross-linking points. This ‘‘ne
classical’’ theory of rubber elasticity, which describes a p
ticular realization of an anisotropic gel exhibits ‘‘soft’’ elas
ticity @14,23# in accord with the general symmetry-bas
predictions of GL.

In this largely pedagogical paper, we will explore the ela
tic and orientational properties of nematic gels from a p
spective that is an extension of that of Ref.@17# rather that of
rubber elasticity@7#. In particular we will describe elastic
properties mostly in terms of nonlinear strain tensors fami
from the elastic theory of solids and membranes@24,25#
rather than the perhaps more fundamental Cauchy defor
tion tensor used in rubber elasticity@22# from which the non-
linear strain tensors can be constructed. Strain can be m
sured relative to any reference state. We will find it useful
measure strain relative to both an isotropic reference s
and, as is the most common practice, relative to the equ
rium, strain-free reference state. These states may or may
be the state at the time of preparation that is commonly u
as a reference state in the theory of~incompressible! rubbers.
Our approach based on nonlinear strains that are invar
under arbitrary rotations of the sample~or, alternatively, as
we shall see, the reference state! allows us to keep track o
rotational invariances with relative ease. It is particula
well suited, as we will show in a future publication@26#, to
the treatment of renormalized elasticity arising from the
terplay of thermal fluctuations and nonlinear elasticity. T
approach is also convenient for the discussion of exter
field-induced instabilities of an equilibrium phase. Most im
portantly, our formalism elucidates the origin of the soft ela
ticity of nematic gels, making it clear that it arises fro
general symmetry principles common to anyspontaneously
uniaxially ordered elastic medium and isnot limited to any
specific model of such materials. Our description has
disadvantage compared to the rubber elasticity approach
it does not naturally treat the very large~as much as 400%
@27#! extensions that can arise in elastomers.

Though gels in their isotropic state and not under str
are macroscopically isotropic and homogeneous, they are
ways randomly anisotropic and inhomogeneous at su
ciently short length scales. Consequently, there is a local
ferred direction of orientational~and spatial! order that acts
as a random orienting~and pinning! field. These quenched
fields are also certainly present in anisotropic gels: opt
observations in thin films provide direct evidence of th

s
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SYMMETRIES AND ELASTICITY OF NEMATIC GELS PHYSICAL REVIEW E66, 011702 ~2002!
existence @28,29#. One consequence of such rando
quenched local fields is that unstretched elastomers cr
linked in the isotropic phase and cooled into the nema
phase exhibit a polydomain orientational structure, wh
disappears at a polydomain-monodomain transition whe
sufficiently large external stress is applied@30#. Such random
static fields can easily be incorporated in our formulation
nematic gels. Their study is in principle necessary to und
stand completely the effect of gel matrix on nematic ord
@question~2! above#. Such an investigation would parallel
body of work on conventional liquid crystals confined insi
the quenched, random, but~nearly! nondeformable environ
ment of rigid gels such as an aerogel@11,31–33#. Experience
with these rigid systems indicate that random fields mi
become qualitatively important at sufficiently long scale
Nevertheless, in this paper, we will completely ignore t
effects of random fields and concentrate on properties of
isotropic gels formed from ideal isotropic homogeneous g
By focusing on gels in which cross links are dense and w
percolated, we will also have nothing to say about the na
of the vulcanization transition itself@34#.

We will also leave for the future@35# the analysis of
‘‘semisoft’’ nematic elastomers@18,20,36# that are prepared
by polymer cross-linking in the nematic phase. These m
rials are characterized by a small nonvanishing elastic mo
lus C5 and nonlinear stress-strain curves with a small
nonvanishing stress up to large strains.

This paper is organized as follows. Section II reviews
standard Lagrangian theory of elasticity and establishes
tation for sections that follow. It introduces the referen
space consisting of points in the undistorted medium and
target space into which these points are mapped. This se
emphasizes thetwo distinct rotational invariances of isotro
pic elastic media, namely invariance with respect to rotat
of the deformed sample itself~rotations in the target space!
and invariance with respect to rotation of points in the ori
nal reference material that map to particular points in
target space~rotations in the reference space!. Section II also
discusses the standard nonlinear strain tensor, the
Cauchy-Green strain tensor, that is invariant with respec
rotations in the target space and introduces an alterna
nonlinear strain tensor, the left Cauchy-Green strain ten
that is invariant with respect to rotations of the referen
space but transforms like rank-2 tensor in the target sp
Section III elaborates on the model considered in Ref.@17#.
It shows in particular that the elastic energy of the ani
tropic gel phase expanded only to harmonic order in
nonlinear strain does not preserve the rotational invarianc
the original energy with respect to rotations in the refere
space. It also discusses the isotropic-to-anisotropic trans
in terms of the alternative strain tensor that preserves r
tional invariance in the reference space. Section IV discus
a model with both strain and the symmetric-traceless ten
order parameterQi j of the nematic state. It shows that th
‘‘soft’’ elasticity of the anisotropic~nematic! state arises be
cause the nematic order parameter can relax strains in
plane containing the anisotropy axis, as first shown by O
sted@14#. Section IV also derives the elastic energy for ne
atic glasses deep in the ordered phase, where biaxial fluc
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tions can be neglected and nematic properties can
described completely by the Frank director. This theory
expressed in terms of generalized nonlinear strains that
functions of strain and relative director orientation and th
are invariant with respect to arbitrary simultaneous rotatio
of the director and mass points. Section V explores the r
tion between the theory presented here and the neoclas
elastomer theory. Section VI concludes with a discussion
some of the many interesting open problems, such as in
bilities of elastomers induced by external perturbations~e.g.,
electric or magnetic fields! and the effects of thermal fluc
tuations and quenched local random anisotropy fields,
can conveniently be addressed through our formulation

II. CLASSICAL LAGRANGIAN ELASTICITY

Classical elasticity@24# provides a phenomenological de
scription of the energy associated with slowly@37# varying
distortions of an elastic body from its equilibrium configur
tion. As discussed in the Introduction, it is a symmetr
restricted theory of the low-energy Goldstone modes ass
ated with spontaneous translational symmetry breaking
this section, we will review the classical theory of Lagran
ian elasticity@38#, introducing concepts that will be impor
tant for our study of spontaneously uniaxial nematic el
tomers.

A. Strain

The equilibrium unstretched medium occupies a region
a Euclidean 3-space, which we will call the reference sp
SR . Mass points in this medium are indexed by their vec
positionsx5(x1 ,x2 ,x3)[(x,y,z) in SR , which are their po-
sitions in the unstretched medium. When the medium is d
torted, the point originally atx is mapped to a new poin
R(x)5„R1(x),R2(x),R3(x)… in Euclidean space. We will re
fer to the space of points defined byR as the target spaceST .
Since there is no distortion whenR(x)5x, it is useful to
introduce the displacement vectoru(x) that measures the de
viation of R from x,

R~x!5x1u~x!. ~2.1!

Both SR andST are Euclidean, with distances determined
the unit metricdx25dxidxi , anddR25dRidRi , where the
Einstein summation convention on repeated indices is un
stood@39#. It is often interesting to consider generalizatio
of the above picture to aD-dimensional reference space an
a d>D target space; for example, to describeD for two-
dimensional tethered membranes fluctuating ind for three-
dimensional real space@25#. In this paper, however, we wil
restrict our attention toD5d53, leaving discussion of
membranes to a future publication@26#.

Distortions that vary slowly on a scale set by microsco
lengths of the reference material~interparticle separation in a
glass, distance between cross-links in an elastomer, etc.! are
described by the Cauchy deformation tensor@39,40#

L i j 5
]Ri

]xj
[] jRi5d i j 1h i j , ~2.2!
2-3
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where

h i j 5] jui ~2.3!

is the displacement gradient tensor. Throughout the pa
we will often use matrix notation in whichM= is the matrix
with componentsMi j and M= T is the transpose matrix with
componentsM ji .

The energy of the distorted state relative to the undisto
one depends on how much the target space is stretched
tive to the reference space, i.e., by how much the dista
between two nearby points changes in the mapping from
reference to the target,

dR22dx252ui j dxidxj , ~2.4!

where

ui j 5
1
2 ~LkiLk j2d i j ! or u=5 1

2 ~L= TL= 2d= !

5 1
2 ~] iuj1] jui1] iuk] juk!

5 1
2 ~h i j 1h j i 1hkihk j!. ~2.5!

ui j is the familiar nonlinear Lagrangian strain tensor@24#,
also called theright Cauchy-Green strain tensor or simp
the Green strain tensor@40#. It is symmetric by construction
It is also invariant ~i.e., transforms as ascalar! under arbi-
trary rotations of thetarget space vectorR, i.e., if Ri is
replaced byRi85OTi jRj , whereOTi j is an arbitrary rotation
matrix, ui j does not change. On the other hand,ui j trans-
forms like a rank-2tensorunder rotations of thereference
space, i.e., ifxi→xi85ORi j

21xj , then@41#

u=→O= Ru=O= R
21 . ~2.6!

Isotropic solids, e.g., the glasses and gels of interest to us
~statistically! invariant under arbitrary rotationO= R in the ref-
erence spaceSR . Crystals, on the other hand, have low
symmetry and are invariant only under a point subgroup
all rotationsO= R .

In contrast, invariance with respect to arbitrary rotatio
in ST is a property ofall elastic media in the absence
external aligning fields, whether they be isotropic, cryst
line, or wildly inhomogeneous. Thus, because it, by co
struction, incorporates theOT invariance, in most instances
ui j is the strain tensor in terms of which elastic theory
most conveniently formulated. However, here we are in
ested in systems~gels! that exhibit rotational invariance in
the referencespace, i.e., anOR invariance ofSR , and, there-
fore, a distinctleft Cauchy-Green strain tensor,

v i j 5
1
2 ~L ikL jk2d i j ! or v=5 1

2 ~L= L= T2d= !

5 1
2 ~] iuj1] jui1]kui]kuj !

5 1
2 ~h i j 1h j i 1h ikh jk!, ~2.7!

is useful @42#. This tensor is invariant under arbitrary rot
tions O= R in SR , but it transforms like a rank-2 tensor und
rotationsO= T in ST :
01170
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v=→O= Tv= O= T
21 . ~2.8!

In what follows, we will simply refer tou= andv= as right and
left strain tensors, respectively.

The left strain tensorv= can be contracted with othe
target-space tensors, such as the Maier–Saupe–de Ge
nematic order parameterQi j , or the electric fieldEi , to form
scalar invariants such as Trv=Q= or Eiv i j Ej . In contrast, the
contractions Tru=Q= andEiui j Ej arenot scalars sinceu= does
not transform like a tensor in the same space as the ten
Qi j andEiEj . In the absence of external aligning fields su
asE that effectively render the target space anisotropic,
right strainu= provides a complete description of elastic d
tortions, even if, as is the case for crystals, the refere
space is anisotropic. IfSR is isotropic and there are extern
fields breaking the isotropy ofST , thenu= cannot provide a
similar complete description, but the left strainv= can. On the
other hand, the left strain cannot provide a complete desc
tion if the reference space is not isotropic. For examp
semisoft elastomers cross-linked in the nematic phase wi
director n0, which specifies a direction inSR , are invariant
under the simultaneous rotations ofn0 and x, n0→O= R

21n0

andx→O= R
21x, but not under rotations,x→O= R

21x, of x alone.
The left strainv= is a scalar inSR , and it cannot be contracte
with the reference space vectorn0. Thus, it is impossible to
construct scalar invariants involvingv= and n0 and to con-
struct a free energy in terms ofv= that reflects the anisotrop
of SR . If SR is anisotropic and there are external fields bre
ing the rotational invariance ofST , then only the deforma-
tion tensorL= can provide a complete description of the e
ergy of elastic distortions.

B. Isotropic systems

For most gels, the reference space is macroscopically
tropic and homogeneous, i.e., like an isotropic fluid, it
invariant underx→T1O= R

21x for arbitrary translationsT and
rotationsO= R in SR . Thus, the elastic energy is invariant u
der R(x)→O= TR(T1O= R

21x). The invariance under rotation
O= T of the target space is easy to understand: different ph
cal orientations of the material~even if arbitrarily distorted!
have the same energy. Invariance underO= R is somewhat
more subtle though complementary. Figure 2 provides a u
ful graphic representation of this invariance in two dime
sions. Consider a circle of radiusr in the reference spac
consisting of the pointsx5r (cosf,sinf)[(r,f). Under dis-
tortion, it is mapped onto some closed curve inST consisting
of points R(f). Thus, the point (r ,f1) in SR is mapped to
the point R15R(f1) in ST , (r ,f2) is mapped toR2
5R(f2), and so on. Under a rotation throughu in SR , f
→f1u. Because of the isotropy of the undistorted, ref
ence state, the energy is not changed if the points (r ,f2u)
rather than (r ,f) are mapped to the pointsR(f), i.e., if
(r ,f12u) is mapped toR1 , (r ,f22u) to R2 and so on.

Care must be taken to incorporate the above symme
in the free energy density of such homogeneous and isotr
gels. Invariance with respect to translationsT in SR is en-
forced by requiring that the free energy density depend o
2-4
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on spatial derivatives ofR with respect tox, i.e., depend only
on L= and possibly higher derivatives ofR.

Under rotations inSR and ST , the Cauchy strain tenso
L i j transforms according to

L i j →OTik

]Rk

]xl8

]xl8

]xj
5OTikLklORl j

T . ~2.9!

The free energy densityf of an isotropic gel is invarian
underindependent O= T andO= R rotations and must satisfy

f ~L= !5 f ~O= TL= O= R
21!. ~2.10!

FIG. 2. Schematic representation of mappings from the re
ence spaceSR to the target spaceST . The pointsx15(r ,f1) and
x25(r ,f2) in SR are mapped, respectively, to the pointsR1 andR2

in ST . There is a strain energyES associated with this mapping. Fo
isotropic reference spaces, mapping of points inSR , first rotated by
u inside the reference space~described by a rotation matrixO= R

21) to
the same set of points inST , i.e., mapping pointsx185(r ,f12u)
andx285(r ,f22u) to R1 andR2 clearly produces the same energ
ES as the unrotated mapping. Subsequent target-space rotatioO= T

by uT of the resulting distorted state with pointsR1 andR2 mapped
to R18 and R28 costs no energy. The transformationR(x)
→O= TR(O= R

21x) between energetically-equivalent nematic states
the Goldstone mode responsible for the novel elastic propertie
nematic elastomers.
01170
It must, therefore, be constructed from the scalar invaria
Tr(L= L= T)n and detL= L= T5(detL)2 @43#. Alternatively, the
free energy can be equivalently expressed in terms ofu= or v= ,
with the respective invariances

f ~u= !5 f ~O= Ru=O= R
21!, ~2.11a!

f ~v= !5 f ~O= Tv=O= T
21!, ~2.11b!

which are enforced by allowing only fully contracted powe
of strain tensors to appear. The energiesf (u= ) and f (v= ) can
be derived fromf (L= ) using

detL= L= T5exp Tr ln~d=12u= !5exp Tr ln~d=12v= !,

Tru= n5Tr@ 1
2 ~L= TL= 2d= !#n5Tr@ 1

2 ~L= L= T2d= !#n5Trv= n.
~2.12!

Thus,f (u= ) and f (v= ) depend only on Tru= n5Trv= n, andf (v= ) is
thesamefunction ofv= that f (u= ) is of u= . For the discussion of
encoding these twoOR andOT symmetries at the harmoni
level in the phonon variableu, see Appendix B.

Although many of the properties of nematic elastom
follow directly from the above invariances, in what follow
it will be useful to have explicit forms for the elastic fre
energy density. A model free energy in terms nonlinear str
tensoru= , up to fourth order inu= is

f ~u= !5 1
2 l~Tru= !21mTru= 22CTru= 31D8~Tru= 2!2

2E8Tru=Tru= 2. ~2.13!

As just discussed, this free energy can be expressed eq
well in terms ofv= merely by replacingu= by v= . Invariances
with respect to rotations inSR andST are enforced inf (u= ) in
different ways. Symmetry underO= T is enforced by the con-
struction of the strain tensoru= , Eq. ~2.5!, which, being a
scalar inST , is automatically invariant underO= T . Invariance
under O= R is enforced by only allowing terms inf (u= ) that
transform as a scalar underO= R , i.e., only fully contracted
powers ofu= . In contrast, invariance off (v= ) with respect to
O= R is enforced by construction of the strain tensorv= ~a scalar
in SR), whereas that with respect toO= T is enforced by only
allowing terms inf (v= ) that transform like a scalar underO= T ,
i.e., requiring that all the target space indices be contrac

As usual, the reference state, relative to whichu= is de-
fined is taken to be in mechanical equilibrium, guarantee
that no terms linear inu= appear. The first two terms off are
the standard elastic energy of an isotropic medium withl
andm the Lamécoefficients@24#. We have included stabiliz-
ing nonlinear terms in the strain tensoru= because we will
eventually want to consider phase transitions to an an
tropic state induced by a decrease in the shear modulum
below a critical value. In the spirit of Landau theory of pha
transitions@16#, at present, we viewm as a phenomenologi
cal parameter that is allowed to vary and even become n
tive. As we shall see in more detail in Sec. IV, the origin
a diminishingm in liquid-crystal elastomers is the instabilit
of the isotropic state toward the development of nema
liquid-crystal order characterized by the Maier-Saupe or
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parameterQ= . In f, we have left out one third-order and thre
fourth-order terms permitted by symmetry, namely, the o
proportional to (Tru= )3, (Tru= )4, (Tru= )2Tru= 2, and Tru=Tru= 3,
respectively. Though these terms can easily be included,
effect is small for the nearly incompressible systems of m
interest to us.

Our primary interest is in the state withspontaneously
broken rotational symmetry that is produced whenm falls
below a critical value. To describe this state and the tra
tion to it, it is useful to decomposeui j into its scalar~in SR)
and symmetric-traceless parts:

ui j 5
1
3 d i j ukk1ũi j , ~2.14!

where

ũi j 5ui j 2
1
3 d i j ukk . ~2.15!

Using Eq.~2.14! in Eq. ~2.13! and keeping only the lowest
order terms in Tru= , we obtain the model free-energy dens
that we will use in discussions of the anisotropic state a
the transition to it,

f 5 1
2 B@Tru=2~E/B!Trũ= 2#21 f 1, ~2.16!

with

f 15 1
2 ATrũ= 22CTrũ= 31D~Trũ= 2!2, ~2.17!

whereA52m, B5l1 2
3 m is the bulk modulus,E5E82C,

D5D82E2/(2B), and for simplicity we have droppe
qualitatively inconsequential cubic and quartic terms in Tu=
@44#.

C. Anisotropic systems

Often the reference state is a crystal that is invariant o
under operations of some subgroup ofO3. In this case, there
are additional combinations of the strain tensor that are
variant under the reduced set of symmetry operations ofSR ,
and the elastic energy is in general described, to harm
order inui j , in terms of a fourth rank elastic-constant tens
Ci jkl , with f 5 1

2 Ci jkl ui j ukl . We will be particularly inter-
ested in uniaxial systems with axis alongn0, for which the
general form of the elastic-constant tensor is~but see Sec.
III !

Ci jkl 5C1n0in0 jn0kn0l1C2~n0in0 jdkl
0'1n0kn0ld i j

0'!

1C3d i j
0'dkl

0'1C4~d ik
0'd j l

0'1d i l
0'd jk

0'!

1 1
2 C5~d ik

0'nj
0nl

01d i l
0'nj

0nk
0

1d jk
0'ni

0nl
01d j l

0'ni
0nk

0!, ~2.18!

whered i j
0'5d i j 2n0in0 j . The elastic energy in three dimen

sions with thez-axis chosen alongn0 is

f uni5
1
2 C1uzz

2 1C2uzz~uxx1uyy!1 1
2 C3~uxx1uyy!

2

1C4~uxx
2 1uyy

2 12uxy
2 !1C5~uxz

2 1uyz
2 !. ~2.19!
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The strainui j is still invariant under arbitrary rotation inST ,
so f uni is invariant under these rotations, as it must be. T
reduced symmetry of the reference state introduces an as
metry between the reference and target spaces, and it i
longer so useful to introduce the alternative strain tensov=
unless we wish to explicitly discuss coupling between str
and another target-space tensor-field order parameter, su
the Maier-Saupe order parameter for a nematic.

The elastic energyf uni of Eq. ~2.19! is harmonic in the
nonlinear strainui j . Higher-order terms inui j are, of course,
permitted and are in fact necessary to preserve full rotatio
invariance in SR , which is present~but hidden!, if the
uniaxial asymmetry arises as a result of thespontaneous
symmetry breaking of anisotropic state, as happens in nem
atic elastomers, introduced in Sec. III.

In semisoft elastomers@18,7#, the rotational invariance o
the soft-elastomer isotropic state~discussed next! is only
weakly broken. Any model describing these systems m
introduce anisotropy in such a way that both the isotro
and the anisotropic soft phases are reproduced when the
isotropy is set to zero. The simplest such model can be c
structed by adding an anisotropic term

f anis52hn0i ũi j n0 j , ~2.20!

which breaksOR symmetry, to the free energy of Eq.~2.16!.
Heren0 is a vector inSR that specifies the direction of pre
ferred alignment, andh is a field measuring the anisotrop
strength. The properties of this model will be explored in
separate publication@35#.

III. STRAIN-ONLY MODEL OF NEMATIC ELASTOMERS

Under appropriate conditions, for example, for suf
ciently small shear modulusm in the model free energy o
Eq. ~2.13!, there can be a transition from an isotropic sta
with L= ;d= to a uniaxial one with two rather than one distin
eigenvalues forL= . This nematic-gel state is obtained fro
the isotropic one by stretching or compressing along so
arbitrary direction inSR specified by a unit vectorn0, which
without loss of generality we take to be along thez axis. It is
characterized by an anisotropic equilibrium right strain te
sor u= 0 with principal axis alongn0. The transition to the
nematic gel can thus be described completely in terms of
free energyf (u= ). Alternatively, the nematic gel can be cha
acterized by an anisotropic equilibrium left strain tensorv= 0
with anisotropy axis along some unit vectorn1 is ST , and the
transition to it can be described byf (v= ). The nematic gel
breaksboth OR andOT symmetry. The description in term
of u= displays explicitly the brokenOR symmetry and that in
terms ofv= the brokenOT symmetry of the nematic gel. Th
underlying order parameter, however, is the deformation t
sor L= , which exhibits both brokenOR andOT symmetry in
the nematic gel. Even though the nematic gel breaks
symmetries, they are both broken at the same time, and t
is only one transition from the isotropic phase to the nema
gel. As discussed in Sec. II B,f (u= ) and f (v= ) are identical
functions of their arguments, andu= and v= develop nonzero
anisotropic values simultaneously.
2-6
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SYMMETRIES AND ELASTICITY OF NEMATIC GELS PHYSICAL REVIEW E66, 011702 ~2002!
Though free energies expressed in terms of the strau=
and v= provide complete descriptions of the phase transit
to the nematic gel, it is important to remember that the f
position functionR(x) or equivalently the displacementu(x)
is needed to describe all configurations of the gel. The t
sors L= , u= , and v= only provide information about long
wavelength distortions. In nematic gels, the shear modu
for certain shear strains vanishes, and the energy expre
in terms of strains alone is not positive definite. A full stat
tical mechanical treatment of nematic gels requires the e
tic energy appearing in the partition trace to be positive d
nite, and additional curvature energies depending on
second derivative ofR(x) must be added to it to make it so
This will be discussed in more detail in a separate publi
tion @26#.

In this section, we will explore the properties of the spo
taneously formed nematic gel described in terms ofu= and
f (u= ). The description in terms ofv= is essentially equivalent
We will explicitly derive the soft elasticity of nematic ge
whereby the strain elastic constantC5 @Eq. ~2.19!# vanishes
identically @17# and there is zero stress@36# associated with
appropriate strains up to a critical value perpendicular
parallel ton0 as long as other strains@45,46# are allowed to
relax to their lowest-energy configurations. Our treatm
provides a complete description of nematic gels and tra
tions to them without any reference to the undelying nem
order. In the next section, we will consider nematic order a
its coupling to strain and show that instabilities toward t
development of nematic order drive the decrease in the s
modulus discussed in the preceding section.

A. Description in terms of uij

It is quite clear from the cubic form of the elastic fre
energy, Eqs.~2.13! and ~2.17!, that whenm becomes suffi-
ciently small, for finiteC, there is a first-order transition
from an isotropic to a uniaxially distorted elastic state, wh
is very similar to the familiar isotropic-to-nematic transitio
@1,2#. We will consider this transition in more detail in Se
III C. In this section, we will investigate the resulting anis
tropic elastic state, whose properties depend only on the
istence ofspontaneouslyformed anisotropy and not on an
particular model of the isotropic-to-nematic transition.

In the positive~negative! uniaxial state that results from
such transition, the elastic material is stretched~compressed!
along n0 in SR and compressed~stretched! along directions
perpendicular ton0. This anisotropy axis can point in an
direction n1 in ST . For the moment, we will taken15n0,
i.e., we do not rotate the sample after it has been stretche
this case, the coordinates of its mass points inST are, there-
fore, described by

R0~x![x85x1u05L= 0x, ~3.1!

where the deformation tensor is spatially uniform and giv
by

L0i j 5L0'd i j
0'1L0uun0in0 j , ~3.2a!

5L0'd i j 1~L0uu2L0'!n0in0 j , ~3.2b!
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where d i j
0'5d i j 2n0in0 j . The corresponding right equilib

rium strain tensor is

u= 05 1
2 ~L= 0

TL= 02d= !. ~3.3!

The anisotropy of the uniaxial state can be characterized
the anisotropy ratio@47#

r 5
L0uu

2

L0'
2

. ~3.4!

Since

L= 0
TL= 05L0'

2 @d=1~r 21!n0n0#, ~3.5!

it is clear that the system is isotropic ifr 51 and only aniso-
tropic if rÞ1. Both positive (r .1) and negative (r ,1)
uniaxial anisotropies are possible, but we will focus mos
on positive uniaxial systems. In incompressible syste
detL= 05L0uuL0'

2 51, L0'5L0uu
21/2, and r 5L0uu

3 . Many of
the properties of the uniaxial phase depend critically onr.

The goal of this section is to explore the elasticity of th
spontaneously uniaxially-ordered gel. Distortions in such
system can be described by deviations,

du=5u=2u= 05 1
2 ~L= TL= 2L= 0

TL= 0!, ~3.6!

of the strain tensoru= from its new equilibrium valueu= 0, both
measured in the coordinatesx of the original isotropic state
SR . It is, however, more common and convenient to descr
these distortions in terms of displacementsR8(x8)[R(x)
and strainsu= 8(x8) expressed as functions of the coordina
x8[R0(x) of the new equilibrium stretched state,

R8~x8!5x81u8~x8!5x1u01du~x!, ~3.7a!

u= 85 1
2 ~L= 8TL= 82d= !' 1

2 ~h
=
81h

=
8T !, ~3.7b!

whereL i j8 5]Ri8/]xj8 andh i j8 5]ui8/]xj8 . Since

L i j 5
]Ri

]xj
5

]Ri8

]xk8

]xk8

]xj
5L ik8 L0k j , ~3.8!

the strain deviationdu= is directly proportional tou= 8 and
therefore proportional to the symmetrized strain (h= 8
1h

=
8T )/2 when linearized,

du=5L= 0
Tu= 8L= 0 . ~3.9!

One would normally expect the elastic free energy for stra
u= 8 about the new uniaxial state to have the form of E
~2.19!, characterized by five independent elastic consta
However, as discussed in Introduction, the fact that
uniaxial state arose viaspontaneoussymmetry breaking of
an isotropic state guarantees that the shear modulusC5 must
vanish. We now demonstrate this explicitly.

Since the original free energy is invariant under rotatio
O= R in SR , the anisotropy directionn0 in SR is arbitrary, and
states characterized by strainO= Ru= 0O= R

21 and u= 0 must have
2-7
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the same bulk energy. This means that there is no bulk
ergy cost associated with a strain

u= 8~u!5~L= 0
T!21~O= Ru0=O= R

212u= 0!L= 0
21 ~3.10!

relative to the uniaxial state characterized byu= 0 since it de-
scribes a rotation inSR , and is, therefore, a Goldstone mod
of brokenOR symmetry. For rotations throughu about they
axis,

O= R5S cosu 0 sinu

0 1 0

2sinu 0 cosu
D . ~3.11!

Using this O= R inside Eq. ~3.10!, we find thatui j8 (u) is a
nontrivial strain even though it describes a pure rotation
SR . Under this rotation,ui j8 (u) only has components in th
xz plane~the plane of rotationu) that are

u8=5
1

4
~r 21!S 12cos 2u r 21/2sin 2u

r 21/2sin 2u 2r 21~12cos 2u!
D
~3.12a!

'
~r 21!

2Ar
S 0 u

u 0D , ~3.12b!

wherer is the anisotropy ratio introduced in Eq.~3.4!, and
the final form is valid for smallu. Since, as just argued, th
elastic free energy must be invariant under rotations inSR , it
cannot depend on the rotation angleu, and, therefore, there
must be no energy cost associated with an infinitesimal st
uxz8 5uzx8 . Similarly, invariance with respect to rotation
about thex axis implies no energy cost associated with t
strain uyz8 . Thus, the shear elastic modulusC5 must identi-
cally vanish in aspontaneouslyuniaxial state, whosehar-
monicelastic energy,

f uni
N 5 1

2 C1uzz8
21C2uzz8 ~uxx8 1uyy8 !1 1

2 C3~uxx8 1uyy8 !2

1C4~uxx8
21uyy8212uxy8

2!, ~3.13!

is characterized by only four elastic constants. The su
script N in f uni

N is introduced to distinguish it from the stan
dard uniaxial energyf uni @Eq. ~2.19!# with C5Þ0. Because
f uni

N contains only quadratic terms in strainui j8 relative to the
broken-symmetry uniaxial phase, as in similar systems@48#
it is only invariant with respect toinfinitesimal rotations in
SR and terms nonlinear inui j8 must be incorporated in orde
to encode the fullOR invariance@15#.

There are striking experimental consequences@18–20# of
the existence of zero-energy strainsu= 8(u) given by Eqs.
~3.10!, ~3.12a! for arbitraryu. Namely, if one of the compo
nents of strainuxz8 , uxx8 , or uzz8 is imposed with the right sign
the other two components can under appropriate boun
conditions adopt values to produce the zero-energy rotati
strain of Eq.~3.12a!. Under general boundary conditions th
prevent access to this zero-energy state, microdomain s
tures with low-energy rotational strains will form. Whe
01170
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r .1, this relaxation is possible only for positiveuxx8 ~exten-
sion perpendicular to the uniaxial directionn0), negativeuzz8
~compression alongn0), and either positive or negativeuxz8 .
For negative anisotropy systems (r ,1), the zero-energy
strain relaxation is possible only for negativeuxx8 and posi-
tive uzz8 .

To illustrate this, consider first a sample withn0 aligned
along thez axis, withr .1. From Eq.~3.12a!, it follows that
uxx8 5(1/2)(r 21)sin2u is positive for a rotational strain whe
r .1. Thus, we can only have soft elasticity for extension
strains alongx, and we takeuxx8 .0. If no relaxation of strain
is allowed, this stretch would cost an energy proportiona
uxx8

2 . If, however, strain relaxation is allowed, strains

uzz8 52
1

r
uxx8 ,

uxz8 56
1

A2r
Auxx8 ~r 2122uxx8 ! , ~3.14!

convert theuxx8 strain to a zero-energy rotation strain tens
~Goldstone mode! with rotation angle

u5sin21A2uxx8

r 21
. ~3.15!

Thus, in an ideal system, there is no bulk energy cost a
ciated with strains 0,uxx8 ,(r 21)/2.

The angleu specifies the direction of the induced uniaxi
equilibrium stretch axis relative to thez axis of a fixed coor-
dinate system inSR . In the current problem, this anisotrop
axis is initially alongz, and it rotates toward thex axis asuxx8
is increased until, at the critical strainuxx8 5(r 21)/2, u
5p/2 and the anisotropy axis has been rotated to be al
the x axis, as illustrated in Fig. 3. For strainsuxx8 larger that
(r 21)/2, the sample will merely stretch along its new a
isotropy axis alongx with the additional strainduxx8 5uxx8
2(r 21)/2. We can calculate the energy associated with
additional strain from the harmonic free energy of Eq.~3.13!
provided we remember thatduxx8 is measured relative to th
original reference system with the anisotropy axis alonz
rather thanx, i.e., if we remember to replaceuzz8 in Eq. ~3.13!

by ūzz8 5(L0'
2 /L0uu

2 )duxx8 5duxx8 /r . uxx8 anduyy8 should be res-
caled as well, but since we minimize over these quantitie
fixed ūzz8 , we do not have to explicitly consider these resc
ings. Performing this minimization, we find

d f 5H 0 if duxx8 ,0;

1

2r 2S C12
C2

2

2C412C3
D ~duxx8 !2 if duxx8 .0.

~3.16!

Consequently, the stress] f /]Lxx8 5Lxx8 ] f /]uxx8 for an ideal
nematic gel is zero foruxx8 ,(r 21)/2 and grows linearly in
duxx8 for uxx8 .(r 21)/2 as shown in Fig. 4.
2-8
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The angleuT of rotation of the anisotropy axis in th
target spaceST is not the same as the rotation angleu in SR .
Indeed, since the energy is invariant with respect to rotati
in ST , uT would be arbitrary, were it not for boundary con
ditions. A specific experimental geometry might, for e
ample, demand that there be no change in thez coordinates
of mass points as a function ofx8. This is the situation de-
picted in Fig. 3. In this case,Lzx8 50, butLxz8 Þ0, and thexz
submatrix ofL i j8 takes the form

L= 85S Lxx8 Lxz8

0 Lzz8
D . ~3.17!

This deformation tensor corresponds to a zero-energy r
tion in SR described by a rotation matrixO= R @Eq. ~3.11!#
provided there exists a rotation matrix

O= T5S cosuT sinuT

2sinuT cosuT
D ~3.18!

in the xz plane ofST such that the strainL= 5L= 8L= 0 relative
to the original reference system isO= TL= 0O= R

21 , or

L= 85O= TL= 0O= R
21L= 0

21 , ~3.19!

an expression that is fully consistent with the form of stra
Goldstone modeu= 8(u), Eq. ~3.12a!. A straightforward calcu-
lation yields

Lzx8 52cosu sinuT1Ar sinu cosuT , ~3.20!

which, upon imposition of the boundary condition ofLzx8
50, Eq. ~3.17!, gives

sin2uT5
r sin2u

11~r 21!sin2u
~3.21a!

5
r

r 21 S 12
1

Lxx8
2D , ~3.21b!

FIG. 3. Schematic representation of the transformations o
rectangular piece of soft nematic gel subjected to a strain per
dicular to its anisotropy axis. Ifuzz8 and uxz8 are constrained to be
zero, there is no rotation of the anisotropy axis indicated b
double arrow as shown in the middle figure. If these quantities
allowed to relax, the anisotropy axis rotates to produce a state
the same energy as the initial state as shown in the final figure
the process, the original rectangle is transformed into a parall
gram sheared through an angleuE , and its anisotropy axis repre
sented by the double arrow is rotated through an angleuT .
01170
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where we used sin2u52uxx8 /(r21), Eq. ~3.15! and (Lxx8 )2

2152uxx8 to obtain the final form. This is exactly the sam
result obtained via a direct minimization of the neoclassi
rubber energy in the incompressible limit@19#.

The angleuT is simply the angle that the uniaxial aniso
ropy axis makes with thez axis in the target space. This ax
is the principal axis ofL= L= T ~or equivalently ofv= ). A direct
calculation ofL= 8L= 0L= 0

TL= 8Tyields

L= L= T5L0'
2 S cos2uT1rsin2uT ~r 21!sinuTcosuT

~r 21!sinuTcosuT r cos2uT1sin2uT
D ,

~3.22!

which is nothing more thanL0= L0=
T rotated thoughuT so that

the principal axis is alongn15(sinuT ,cosuT). Under the
transformation defined byL= 8 of Eq. ~3.17!, a rectangle will
be transformed into a parallelogram with two edges para
to thex axis and two edges making an angle

uE5tan21
Lxz8

Lzz8
5tan21S ~r 21!tanuT

r 1tan2uT
D ~3.23!

with the vertical. BothuE and uT are indicated in Fig. 3.
Note that the argument of the inverse tangent in the exp
sion for uE rises from zero, reaches a maximum, and th
returns to zero asuT passes from zero top/2, the maximum
angle of rotation of the anisotropy axis. In the process,L=
passes from having extensionL0uu along thez axis andL0'

along thex axis to having extensionL0' along thez axis and
L0uu along x. Thus, the original rectangle is distorted to
parallelogram that first becomes more slanted as strain
creases, reaches a maximum slant, and then becomes
slanted until it finally reaches a rectangular form that is p
cisely the original rectangle rotated byp/2 before stretching
further along thex axis.

It is notable that the expression, Eq.~3.21b!, for sinuT is
independent of the detailed form of the elastic energy a
that it is characterized only by the level of anisotropyr of the
initial uniaxial state and by the deformationLxx8 applied to it.
The advantage of our approach is that it makes it clear
the phenomenon of soft response, summarized by Fig. 4,
zero stress for a range of longitudinal strain, applied perp
dicular to the uniaxial direction, follows entirely from gen
eral symmetry principles of breaking of rotational invarian
of the reference state. It is a property ofany nematic gel

a
n-

a
re
th
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FIG. 4. Stresssxx versus strainLxx for an ideal soft nematic
elastomer stretched along a direction perpendicular to the direc
of initial alignment. The stress is zero up to a critical strainLxx

5Ar . Beyond that, the stress initially grows linearly from zero.
2-9
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LUBENSKY, MUKHOPADHYAY, RADZIHOVSKY, AND XING PHYSICAL REVIEW E 66, 011702 ~2002!
formed spontaneously from an isotropic gel, and is theref
independent of the details of the microscopic model of
gel and the mechanism that drives the uniaxial instability
confirmed by the generic form foruT in Eq. ~3.21b!.

There is spectacular experimental evidence@18# for
uT(Lxx8 ), Eq. ~3.21b!. Likewise, experiments confirm the G
prediction of softness~vanishing stress up to a critical valu
of strain, Fig. 4!, in the limit in which the gel is cross-linked
in the isotropic phase. In contrast, chemically identical n
works cross-linked in the nematic phase exhibit a platea
the stress-strain curve that approaches zero as the degr
nematic order during cross-linking is decreased. See
@20# for a presentation and discussion of these results.

It is clear that forr .1 an imposed shear strainuxz8 or a
compressional strainuzz8 ,0 can be converted to zero-energ
rotational strain just as for the caseuxx8 .0 just considered.
The energy of a shear strain is zero foruuxz8 u,(r
21)/(4Ar ), and that of a compressional strain is zero
uuzz8 u,(r 21)/(2r ). While softness with respect tosmall
shears below a critical frequency has been observed@49#, to
our knowledge, our above prediction of softness over afinite
range of strain for the geometries with imposeduxz8 Þ0 or
uzz8 ,0 has not been tested.

The above discussion and the structure of the zero-en
strainui j8 (u), Eq. ~3.12a!, imply that our arguments for sof
elasticity go through equally well for the negative uniax
anisotropy elastomers,r ,1, but with reversed signs of th
imposed zero-energy strains. Thus, in negative uniaxial e
tomers, there is no stress associated with unconstrainedcom-
pressionalongx, uxx8 ,0 andextensionalongz, uzz8 .0.

B. Description in terms of v i j

In the discussion just presented, the nematic state an
soft elasticity were described in terms of the right strain t
sorui j . As demonstrated in Sec. II B, this state could equa
well be described in terms of the left strain tensorv i j , which
has an equilibrium value

v= 05 1
2 ~L= 0L= 0

T2d= ! ~3.24!

that is identical tou= 0 in the basis defined byn0. The devia-
tions from the spontaneously anisotropic equilibrium st
L= 0 can be described by

dv=5v=2v= 05 1
2 ~L= L= T2L= 0L= 0

T! ~3.25!

as well asdu= . The deviationsdu= and dv= , however, have
different relations to the displacement gradient tensorh= 8
relative to the anistropic equilibrium state. As we saw in E
~3.9!, du= is linearly proportional tou= 8 and at linear order
depends only on thesymmetrizedpart ofh= 8. dv= on the other
hand isnot proportional tov= 8 defined by Eq.~2.7! with L=
replaced byL= 8, and to linear order, it depends onboth the
symmetric and antisymmetric parts ofh= 8. Using Eqs.~3.25!
and ~2.2!, we easily derive
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L0'
22dv i j 5

1
2 ~h i j8 1h j i8 1h ik8 h jk8 !1 1

2 ~r 21!~n0in0kh jk8

1h ik8 n0kn0 j1h ik8 n0kn0lh j l8 !, ~3.26!

in terms ofh= 8, with r the previously defined anisotropy rati
@Eq. ~3.4#. Using the decomposition

h= 85h= S81h= A8 h= 8T5h= S82h= A8 , ~3.27!

where hSi j8 5hS ji8 and hAi j8 52hA ji8 are, respectively, the
symmetric and antisymmetric parts ofh i j8 and defining a ro-
tation angle

V i5
1
2 e i jk

]uk8

]xj8
5 1

2 e i jkhAk j8 , ~3.28!

we obtain

L0'
22dv i j 5hSi j8 1 1

2 ~r 21!@n0in0khS jk8 1hSik8 n0kn0 j #

2 1
2 ~r 21!@n0i~n03V! j1~n03V! in0 j #

~3.29!

to linear order inh i j8 . We thus explicitly demonstrate tha
dv i j is a function of both the symmetric and antisymmet
parts ofh i j8 . At first pass, this observation appears to cont
dict the facts that the linearized form ofdui j , Eqs.~3.7b! and
~3.9!, does not depend onhAi j8 , and that the harmonic free
energy of the nematic phase must have exactly the s
form whether expressed in terms ofdui j or dv i j . The di-
lemma is resolved by noting that only the soft components
the strain,dvxz anddvyz , depend onhAi j8 , and that, to har-
monic order,f uni

N (v= ) is guaranteed byOR invariance~which
leads to vanishing ofC5) to be independent of such strain
Consequently, consistent with the expectations, in bothui j
and v i j descriptions no antisymmetric part of the deform
tion tensorhAi j8 appears.

C. Isotropic-to-uniaxial transition

In a transition from the isotropic to the uniaxial state, t
strain develops a nonvanishing anisotropic component.
can describe this transition equivalently in terms ofu= and
f (u= ) or in terms ofv= and f (v= ). To be concrete, we will use
u= -description here. Since the isotropic, volume-changing p
of the strain is insensitive to anisotropy, the appropriate or
parameter for the transition is the symmetric-traceless c
ponent of the strain,ũ= @Eq. ~2.15!#, which is identical in form
to the symmetric-traceless order-parameter tensorQi j of a
nematic liquid-crystalline phase@1,2#. Thus, in mean-field
theory, the transition from the isotropic to the uniaxial sta
is identical to the isotropic-to-nematic transition, who
properties have been exhaustively studied@1,2#. ~In Appen-
dix A, we review the formal properties of this transition th
are relevant to the current discussion.! To see this in more
detail, we can integrate out the ‘‘massive’’ Tru= from f (u= ) in
Eq. ~2.16!, to obtain an effective theory in terms ofũ alone.
This operation yields
2-10
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Tru=5
E

B
Trũ= 2, ~3.30!

and the effective free energy reduces tof 21(ũ) of Eq.
~2.17!. Because of the presence of a cubic invariant, the
energy f 21(ũ= ) exhibits a first-order transition atA5Ac
5C2/(12D) to a state with

ũi j
0 5c~ni

0nj
02 1

3 d i j !, ~3.31!

wherec satisfies the equation of state

A2Cc1 8
3 Dc250. ~3.32!

The total strain in the distorted state is thus

ui j
0 5ũi j

0 1
2

9

E

B
c2d i j . ~3.33!

This corresponds to a stretched state with target space
tions R05L= 0x characterized by a deformation tensor

L= 05A112u= 05S L0' 0 0

0 L0' 0

0 0 L0uu

D , ~3.34!

with

L0'5S 11
4

9

E

B
c22

2

3
c D 1/2

,

L0uu5S 11
4

9

E

B
c21

4

3
c D 1/2

. ~3.35!

This form for L= 0 preserves the volume up to orderc2. The
order parameterc is a direct measure of the spontaneo
stretch anisotropy of the nematic state, with

c5 1
2 ~L0uu

2 2L0'
2 !5 1

2 L0'
2 ~r 21!, ~3.36!

wherer is defined in Eq.~3.4.
The elastic free energyf 21(u= ) can now be expanded i

powers ofdu=5u=2u= 0 and reexpressed in terms ofu= 8, de-
fined in Eq.~3.9!. Ward identities, imposed by the rotation
OR invariance, guarantee that terms proportional to (duxz)

2

and (duyz)
2 vanish. The harmonic elastic energy is, the

fore, given byf uni
N @Eq. ~3.13!# with

C15FBS 12
4E

3B
c D 2

2
4

3
A1

2

3
CcGL0uu

4 ,

C25FBS 12
4E

3B
c D S 11

2E

3B
c D1

2

3
A2

1

3
CcGL0uu

2 L0'
2 ,

C35FBS 11
2E

3B
c D 2

2
1

3
A2

4

3
CcGL0'

4 ,
01170
e

si-

s

-

C45
3

2
CcL0'

4 , ~3.37!

with C550, as anticipated in our early discussion of t
generic, symmetry-dictated form of the elastic free ener
From Eq. ~3.32! we note thatc has the same sign asC,
ensuring thatC4;Cc is always positive.

D. Biaxial nematic

It is clear from the form off uni
N (u= 8), Eq. ~3.13!, that if C4

is driven negative@50# the uniaxial state becomes unstable
strains in thexy plane perpendicular to the establish
uniaxial order, i.e., the uniaxial state becomes unstable r
tive to a biaxial state with different equilibrium strains in a
three directions. A biaxial nematic gel is softer than a unax
one @51#, and, as we will show here, it has no nonvanishi
shear modulus in three dimensions. The order paramete
the unaxial-to-biaxial transition is the two-dimension
symmetric-traceless tensor obtained by projectingũ= onto the
xy plane. Since there are no cubic invariants of a tw
dimensional symmetric traceless tensor, the transition fr
the uniaxial to the biaxial state is generically a continuo
transition in thexy universality class.

The biaxial phase is characterized by a Cauchy defor
tion tensor with three independent components,

L= 05S L01 0 0

0 L02 0

0 0 L03

D , ~3.38!

and the corresponding equilibrium strain tensor given by

u= 05S u01 0 0

0 u02 0

0 0 u03

D , ~3.39!

with u0a5(L0a
2 21)/2, a51,2,3. The additional broken ro

tational symmetry of the biaxial relative to the uniaxial pha
causes more shear elastic moduli to vanish. As in unia
gels, strains of the form of Eq.~3.10! @with u= 0 given by Eq.
~3.39!# that arise from arbitrary three-dimensional rotatio
OR in SR cost no energy. For simplicity, we consider only th
most generalinfinitesimalrotation matrix, which can be ex
pressed in terms of rotation anglesux , uy , anduz , respec-
tively about thex, y, andz axes as

OR5S 1 2uz uy

uz 1 2ux

2uy ux 1
D . ~3.40!

The symmetric zero-mode strain tensoru= 8 calculated from
this OR and Eq.~3.10! has components that to linear order
the infinitesimal angles of rotation areuxx8 5uyy8 5uzz8 50 and

uxy8 5L01
21L02

21~u012u02!uz ,
2-11
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uxz8 52L01
21L03

21~u012u03!uy ,

uyz8 5L02
21L03

21~u022u03!ux . ~3.41a!

Since the underlyingOR invariance demands that there c
be no energy cost associated with such zero-mode strains
elastic energy cannot depend on the shear strainsuxy8 , uxz8 , or
uyz8 to harmonic order. The hallmark property of solid that
can support a static shear stress is therefore lost in a sp
neously biaxial solid. The biaxial nematic is an anisotro
tethered fluid@52–54#. The harmonic elastic energy of a b
axial gel, therefore, depends only on the compress
extensional strainsuxx8 , uyy8 anduzz8 and has the form

f biax5
1
2 ( Babuaa8 ubb8 . ~3.42!

There are in general six independent components ofBab . As
in uniaxial gels, there is soft compressional and extensio
elasticity in biaxial gels with vanishing stress up to critic
values of the strain. We will not treat these properties
detail here.

IV. NEMATIC GELS: STRAIN AND
ORIENTATIONAL ORDER

In this section we extend our formulation of the model
anisotropic gels to include both the elastic and orientatio
~nematic! degrees of freedom. We first consider a ‘‘soft-spi
theory in which orientational order is described
symmetric-traceless nematic order parameterQi j , which has
both uniaxial and biaxial components. This theory, which c
describe both isotropic and anisotropic phases of gels and
transitions between them, takes explicit account of the c
pling between strain andQi j . It can be viewed as a theory i
which the familiar isotropic-nematic transition characteriz
by ordering ofQi j induces elastic distortion. Guided by th
underlying rotational symmetry of the nematic gel, we th
develop a complementary ‘‘hard-spin’’ model of nematic g
valid deep in the nematically ordered phase. This theor
formulated in terms of the strain and the nematic directon
alone, with all ‘‘massive’’ modes~e.g., magnitude of the
uniaxial orderS and biaxial fluctuations! integrated out. A
common feature of these complementary models is their
variance with respect to global simultaneous rotations
strain and nematic order. This invariance leads to gauge
couplings between strain and nematic order, whose harm
limit reduces to those derived by Olmsted@14# following de
Gennes@6#. However, our expression in terms ofv i j and n
for theglobally invariant energy deep in the nematic phase
new.

A. Simple model of theI -N transition

In the preceding section, we investigated a model
which an isotropic elastic medium undergoes a spontane
anisotropic distortion triggered by the fall of its shear mod
lus below a critical value. In liquid-crystal elastomers, t
reduction in the shear modulus and the elastic distortion
it leads to are actually driven by the underlying isotrop
01170
the

ta-
c

n/

al
l
n

f
al

n
he
u-

n

is

-
f
e
ic

s

n
us
-

at
-

nematic transition of the mesogenic component of the g
that is, orientational ordering of, e.g., side-chain or ma
chain nematogens. It is, therefore, of some interest to
velop a model in which the orientational order parameterQi j
explicitly appears.

A generic model free-energy density for such a model o
liquid-crystal gel will consist of an isotropic elastic term
f el(u= ), a term f Q8 (Q= ) for nematic orientational order, and
nematoelastic termf C(v= ,Q= ) that couples strain to the nem
atic order parameterQi j :

f el2Q5 f el1 f Q8 1 f C . ~4.1!

For simplicity, we can takef el to be the elastic energyf of
Eq. ~2.13! with only quadratic-order terms inui j ~or, equiva-
lently, v i j ), and near theI -N transition, we can choose th
usual Landau–de Gennes form forf Q8 :

f Q8 5 1
2 r Q8 TrQ= 22w3TrQ= 31w48~TrQ= 2!2. ~4.2!

Terms in gradients ofQ= should also be included, but they d
not affect the present mean-field discussion, and we
therefore ignore them here. The most general local ene
coupling strain toQi j can be constructed from products
terms invariant under arbitrary rotations in bothSR andST ,
whose general form is Tr@v= n1Q= m1

•••v= npQ= mp#. Note that
these terms involve couplings betweenv i j ~rather thanui j )
and Qi j , becauseQi j exists inST , and likev i j transforms
like a tensor under rotations inST but like a scalar underOR
rotations inSR . To keep our discussion simple, we will fo
the moment consider a simple form forf C :

f C52sTru=TrQ= 222tTrṽ=Q= , ~4.3!

where ṽ i j 5v i j 2
1
3 d i j vkk is the symmetric-traceless part o

v i j and where we used the fact that Tru=5Trv= . This energy
captures the important qualitative features of stra
orientational coupling, namely, that the development of o
entational order will drive an anisotropic distortion and
smaller change in volume.

An elastic energyf el
u that is a function of strain alone ca

be obtained by integratingQ= out of the total free energy o
Eq. ~4.1!. The leading-order correction of this operation tof el

is 22(t2/r Q8 )Trũ2. Thusf el
u has exactly the same form as E

~2.13!, with m replaced bym85m2(2t2/r Q8 ). Clearly, m8
decreases and passes through zero asr Q8 decreases and th
I -N transition is approached from the isotropic phase. Th
the decrease inm in the models of Sec. III arises from insta
bilities toward the development of nematic orientational
der.

To treat the effects of strain-orientational coupling af
the transition to the nematic state occurs, it is useful to rec
f in a slightly different form,

f el2Q5 1
2 B@Tru=2~s/B!TrQ= 2#21mTr@ ṽ=2~ t/m!Q= #21 f Q ,

~4.4!

where
2-12
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f Q5 1
2 r QTrQ= 22w3TrQ= 31w4~TrQ= 2!2 ~4.5!

with r Q5r Q8 22(t2/m) andw45w482(s2/2B). This free en-
ergy leads to the equations of state

] f

]Tru=
5B@Tru=2~s/B!TrQ= 2#50,

] f

] ṽ i j

5m@ ṽ i j 2~ t/m!Qi j #50, ~4.6!

] f

]Qi j
5

] f Q

]Qi j
2s@Tru=2~s/B!TrQ= 2#Qi j 22t@ ṽ i j 2~ t/m!Qi j #

50. ~4.7!

The uniaxial solutions to these equations are given by

Tru= 05
s

B
TrQ= 0

2 , ~4.8a!

ṽ i j
0 5

t

m
Qi j

0 , ~4.8b!

Qi j
0 5S~n0in0 j2

1
3 d i j !, ~4.8c!

with S satisfying

r QS2w3S21 8
3 w4S350. ~4.9!

Using these uniaxial solutions Eq.~4.8! in the new stretched
state, we find

L0'
2 511

4

9

s

B
S22

2

3

t

m
S,

L0uu
2 511

4

9

s

B
S21

4

3

t

m
S. ~4.10!

Note thatL0uu
2 2L0'

2 52(t/m)S is linear in the nematic orde
parameterS.

As discussed in Appendix A, fluctuations away from t
equilibrium state are conveniently treated with the introd
tion of a complete set of five orthonormal symmetr
traceless matricesI i j

a satisfying I i j
a I j i

b 5dab that allow us to

expand Qi j and ṽ i j as Qi j 5(a50
4 QaI i j

a and ṽ i j

5(a50
4 vaI i j

a . Expressions forQa andva in terms ofQi j and
v i j , respectively, are given in Eqs.~A2!. In particular,Q0

5A2/3S measures the magnitude of uniaxial order,Q1 and
Q2 measure the two independent components of biaxial
der, andQ3 and Q4 describe rotations of the direction o
uniaxial order. In terms of these variables, we have, to h
monic order indv i j anddQi j ,
01170
-

r-

r-

d f el2Q5 1
2 B@Trdu=2~4s/3B!SdS#2

1m@dv02~ t/m!A2/3dS#2

1m (
a51

4

@va2~ t/m!Qa#2

1 1
2 A1~dS!21 1

2 A2@Q1
21Q2

2#, ~4.11!

whereA1 andA2 are given in Eqs.~A6!. Rotational invari-
ance off Q guarantees that termsQ3

2;Qxz
2 andQ4

2;Qyz
2 do

not appear in the nematic state. We can integrate out
‘‘massive’’ longitudinal modedS and biaxial modesQ1 and
Q2 to obtain

d f v5 1
2 B̄1~dvzz!

21B̄2dvzz~dvxx1dvyy!

1 1
2 B̄3~dvxx1dvyy!

2

1B̄4~dvxx
2 1dvyy

2 12dvxy
2 !

12m~@dvxz2~ t/m!Qxz#
2

1@dvyz2~ t/m!Qyz#
2!, ~4.12!

where the coefficientsB̄a are evaluated in Appendix C. Thi
free energy is manifestly invariant under arbitrary rotatio
in SR because it is a function of the strainv i j only. However,
its invariance in theST is restricted to infinitesimal rotation
in OT because we only used the harmonic free energy
integrate over ‘‘massive’’ modes. Because underlyingOT in-
variance of the nematic state forbids ‘‘massive’’ terms inQxz
and Qyz , integration over them also eliminates strainsvxz
andvyz from the resulting elastic free energy, which, as a
ticipated takes the form identical to that in Eq.~3.13!. Such
symmetry-enforced vanishing of an elastic constant~here
C5) is mathematically closely related to the well-know
Anderson-Higgs mechanism in gauge theories@16#.

The terms involvingQxz andQyz are interesting becaus
they determine the energy cost of rotating the director aw
from the direction of uniaxial stretch. When we convert
the strain variables of the stretched state using Eq.~3.29! and
the expressions, Eq.~4.10!, for L0' andL0uu in terms ofS,
we obtain to lowest order indn5n2n0,

f el
v,n5 1

2 C1hSzz82 1C2hSzz~hSxx8 1hSyy8 !

1 1
2 C3~hSxx8 1hSyy8 !21C4~hSxx82 1hSyy82 12hSxy82 !

1 1
2 m8 (

a5x,y
@hSaz8 2b~dna2hAza8 !#2, ~4.13!

where

b5
~r 21!

~r 11!
~4.14!

and elastic constantsCa are related to the constantsB̄a via
C15L0uu

4 B̄1 , C25L0uu
2 L0'

2 B̄2 , C35L0'
4 B̄3 , C45L0'

4 B̄4,
andm85(r 11)2L0'

4 m. The form of this energy is in fact the
2-13
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most general one, and we will derive it again in the follo
ing section after we have derived its nonlinear general
tion. It is exactly the form obtained by Olmsted@14# follow-
ing de Gennes@6# and Warner, Bladon, and Terentjev@23#. It
shows clearly how the director can relax locally todna

5hAza8 1b21hSaz to eliminate any dependence of the fr
energy onhSaz8 , i.e., to makeC550. It is worth noting that
in the original treatment of de Gennes@6#, the coefficients of
(hSza8 )2 (m8 or 4C44 in the notation of de Gennes!,
hSza8 (dna2hSza8 ) (bm8 or D2), and (dnz2hSza8 )2 (b2m8 or
D1) were treated as independent coefficients, as indeed
are in a general system cross-linked in the nematic pha
Olmsted@14# derived the relationsD2 /m852b andD1 /m8
5b2 for the rotationally invariant neoclassical model of ru
ber elasticity. These relations, which are required by ro
tional invariance, emerge naturally from our treatment.

B. Theory with strain and director

We have just seen how the development of nematic o
characterized byQi j leads to a stretched nematic elastom
with a soft elasticity. The formulation in terms ofQi j is well
suited to a description of the transition from the isotropic
the nematic state. Deep in the nematic phase, the theory
best captures the effects of long-wavelength strains
variations in the direction of nematic order is one expres
in terms of strain and the nematic directorn only, i.e., one in
which fluctuations inS and in the biaxial part ofQi j are
integrated out. This theory, like others we have discus
must be invariant under both rotations inSR and under si-
multaneous rotations ofv i j andn in ST .

To construct a fully rotationally invariant theory deep
the nematic phase, it is convenient to introduce a local co
dinate system defined by the orthonormal triad$e1,e2,e3

[n% consisting of the local directorn and two vectorse1 and
e2 perpendicular ton. These vectors satisfy

em
•en5dmn, ~4.15a!

(
a51,2

ei
aej

a5d i j
'[d i j 2ninj . ~4.15b!

In what follows, we will adopt a notation in which Gree
indicesm andn will run over 1 to 3, and Roman indicesa
andb will run from 1 to 2, i.e., over the subspace transve
to n. The left strain tensorv= can always be expressed
terms of its components in this basis:

v i j 5vmnei
mej

n , ~4.16a!

5v uuninj1v'
abei

aej
b1v uu'

a ~niej
a1ei

anj !, ~4.16b!

where

vmn5ei
mv i j ej

n, ~4.17!

and

v uu5niv i j nj , ~4.18a!
01170
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v uu'
a 5niv i j ej

a , ~4.18b!

v'
ab5ei

av i j ej
b . ~4.18c!

The componentsvmn are invariant under rotations inSR be-
causev i j is invariant underOR by construction. They are
also invariant under simultaneous rotations of bothR and the
triad $em% in ST , i.e., they maintain their same numeric
value, under simultaneous rotations ofv i j and the basis
$e1,e2,n%.

A gel whose anisotropic state forms via spontaneous s
metry breaking from the isotropic phase has no preferred
imposed directions, and the elastic free energy will depe
only on v uu , v'

ab , and v uu'
a . Furthermore, this free energ

cannot depend on the arbitrary choice of the vectorse1 and
e2 in the plane perpendicular ton, and it will be a function
only of vmn in the combinationsv uu , v'

aa , v uu'
a v uu'

a , and
v'

abv'
ab . Since linear terms proportional tov uu and v'

aa are
present in the anisotropic phase, it will be characterized b
nonvanishing equilibrium strainv0

mn with componentsv0uu
andv0'

ab . If the equilibrium director isn0, then such a uniaxi-
ally distorted state is characterized by the equilibrium str

v0i j 5v0uun0in0 j1v0'~d i j 2n0in0 j !,

[ 1
2 @Gi j ~n0!2d i j #, ~4.19!

wherev0uu5(L0uu
2 21)/2, v0'5(L0'

2 21)/2 and

Gi j ~n!5L0uu
2 ninj1L0'

2 ~d i j 2ninj !. ~4.20!

Away from equilibrium, the free energy can be expand
in the deviations

dvmn5vmn2v0
mn ~4.21!

of the strain from its equilibrium value. To harmonic order
these deviations, we have

d f w5 1
2 C1wuu

21C2wuuw'
aa1 1

2 C3~w'
aa!21C4w'

abw'
ab

1C5wuu'
a wuu'

a , ~4.22!

where the rescaled invariant strains are

wuu5L0uu
22~v uu2v0uu!,

w'
ab5L0'

22~v'
ab2v0'

ab !,

wuu'
a 5L̄0

22~v uu'
a 2v0uu'

a !, ~4.23!

with L̄0
25(L0uu

2 1L0'
2 )/2. Obviously, we could define thew

strains above without the prefactors. Our choice was mad
produce the simplest linearized energy, e.g.,C3(w'

aa)2

→C3(hxx8 1hyy8 )2. Without theL0'
2 factor in the definition

of w'
ab , the linearized theory would contain the ter

C3L0'
24(hxx8 1hyy8 )2 instead. Even though this free energy

only an expansion about a uniaxially distorted equilibriu
state, unlike the free energies@Eq. ~3.13!# expressed in terms
2-14
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of strain alone that we considered in Sec. III, it is complet
invariant with respect to arbitrary rotations inboth SR and
ST .

The equilibrium valuesv0uu andv0'
ab do not depend on the

particular direction of n. If $em%5$e0
m%, then v0

mn

5e0i
m v0i j e0 j

n . Away from equilibrium defined byn0 , v i j

5v0i j 1dv i j wherev0i j is given by Eq.~4.19! and dv i j by
Eq. ~3.26!. Thus

dvmn5~ei
mej

n2e0i
m e0 j

n !v0i j 1ei
mdv i j ej

n , ~4.24!

and we have

wuu5L0uu
22nidv i j nj2

1
2 @12~1/r !#@12~n•n0!2#

'n0ih i j8 n0 j

5hzz8 , ~4.25a!

w'
aa5L0'

22d i j
'dv i j 1

1
2 ~r 21!@12~n•n0!2#

'd i j
0'h i j8

5hxx8 1hyy8 , ~4.25b!

wuu'
a wuu'

a 5L̄0
24ninkd j l

0'dv i j dvkl

12bL̄0
22~n•n0!nidv i j d jk

' n0k

1b2~n•n0!2@12~n•n0!2#

'(
l

@hSzl8 2b~dnl2hAlz8 !#2, ~4.25c!

w'
abw'

ab5L0'
24d ik

' d j l
'dv i j8 dvkl8 1~r 21!n0in0 jd ik

' d l j
'dvkl

1 1
4 ~r 21!2@12~n•n0!2#

'd ik
0'd j l

0'hSi j8 hSkl8

5hxx8
21hyy8212hSxy82 , ~4.25d!

whereb is defined in Eq.~4.14!. The energyd f w is charac-
terized by the five elastic constantsCa and the stretching
ratio r, which has the same value in every one of the non
ear strains.

Alternative but equivalent expressions for the strains
Eq. ~4.23! are useful and elegant. The components of
equilibrium strainsv0

mn have the same value if the basis$e0
m%

is transformed to the basis$em% provided the directorn0 in
Gi j (n0) @Eq. ~4.20!# is transformed ton. Thus we have

v0
mn5 1

2 @e0i
m Gi j ~n0!e0 j

n 2dmn#5 1
2 @ei

mGi j ~n!ej
n2dmn#,

~4.26!

and from Eqs.~2.7!, ~3.8!, and~4.17!

vmn5 1
2 @ei

mL i j8 Gjk~n0!Lkl8
Tel

n2dmn#. ~4.27!

From this we obtain

dvmn5ei
mVi j ej

n , ~4.28!
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where

V= 5 1
2 @L= 8G= ~n0!L= 8T2G= ~n!#, ~4.29!

and finally

v uu5L0uu
22niVi j nj ,

w'
aa5L0'

22d i j
'Vi j ,

wuu'
a wuu'

a 5L̄0
24ninkd j l

'Vi j Vkl ,

w'
abw'

ab5L0'
24d ik

' d j l
'Vi j Vkl . ~4.30!

C. Cross-linking in the nematic phase

If an elastomer is cross linked in the nematic rather th
the isotropic phase, the memory of the anisotropy of
state, with a uniaxial directionn0, at the time of cross-linking
is locked in, and fullOR invariance ofSR is reduced down to
D`h symmetry. If coupling to nematic order is turned off, th
system will be characterized by a uniaxial elastic energy
the form of Eq.~2.19! with five elastic constants in genera
~Turning off this coupling is not as unphysical as it ma
seem. This is precisely what is done in treatments of pla
crystals consisting of anisotropic molecules such asN2.! This
part of the elastic energy is a function ofui j and is invariant
under rotations inST . It is also invariant under simultaneou
rotations ofn0 andx in SR and under operations onx in D`h
at fixedn0. Couplings to the nematic order parameterQ

=
must

be invariant under simultaneous rotations ofR andQ
=

in ST

and under simultaneous rotations ofx and n0 in SR . The
simplest couplings linear inQ

=
are of the form

f C
N52TrL= h=L= TQ

=
22bTrv=Q

=
, ~4.31!

wherehi j 5hn0in0 j and, as before,L= L= T5d=12v= . The first
term in this energy reduces to2hn0iQi j n0 j and favors align-
ment of principal axes ofQ

=
alongn0 in the absence of de

formation, when the deformation tensorL= is the unit tensor.
The generalization of Eq.~4.22! to systems cross-linked

in the nematic phase is fairly complicated. It cannot be
pressed in terms of the straindv i j alone; it can only be ex-
pressed in terms of the more fundamental nonsymmetr
strainsh i j . However, the major effect of cross-linking in th
nematic phase is to to maken0 a preferred direction with an
energy cost to rotate away from that direction, which can
described by the addition of a term2h(n0•n)2 to Eq.~4.22!
to lowest order inh i j @55#.

V. NEOCLASSICAL THEORY OF ELASTOMERS

So far we have described liquid-crystal gels in terms
nonlinear strains, rotationally invariant in eitherSR or in ST ,
relative to some equilibrium reference state, and we h
focused on those properties that result from the spontane
broken rotational symmetry of the nematic state. We ha
treated the elastic constants in our model free energy as
nomenological parameters to be determined experiment
To date, experimental realization of liquid-crystalline ela
tomers are cross-linked liquid-crystalline polymers. They
2-15
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rubbers with orientational degrees of freedom of a liqu
crystal, and their elastic properties over a very wide range
strains can be described quantitatively by a generalizatio
the classic theory of rubber elasticity@21#. This is a semim-
icroscopic theory in which the origin of shear moduli is t
reduction of entropy arising from constraining polymers
pass through cross-linking points. In this section, we w
show that this theory, when expressed in terms of nonlin
strains, is equivalent to those discussed in preceding sec
of this article.

In the simplest version of the neoclassical theory, polym
segments between cross links are viewed as indepen
random-coil polymers of lengthL. In the anisotropic envi-
ronment induced by the nematic order, the effective s
lengths parallel and perpendicular to the direction of nem
order are different, and mean-square end-to-end displ
ment is characterized by an anisotropic step-length tens

l=5 lg
=
, ~5.1!

wherel is a length andg
=

is a unitless tensor, reflecting sy
tem anisotropy, whose form will be discussed in differe
contexts below. The probability that the two ends of a sin
chain are separated byR is

P~R!5F detl=21

~2pL/3!3GexpS 2
3

2L
Ri ł i j

21Rj D . ~5.2!

The free energy per chain isf chain52T ln P(R). Now as-
sume that the separationR was produced by an affine tran
formation from some initial state with separationR0 such
that Ri5L ri j R0 j , whereL= r is the deformation tensor rela
tive to the initial state.~Later we will introduce a new refer
ence state and use the symbolL= to denote deformations
relative to that state.! The free energy per chain of the enti
elastomer is thenf chain(R0) averaged over all separationsR0
of the initial state, which we assume consists of rando
walk chain segments characterized by a step-length te
l=05 l 0g

= 0 and a probability distribution given by Eq.~5.2!
with l= replaced byl=0. The initial state may be viewed as th
state at the time of cross-linking. Thus, if the system is cro
linked in the isotropic state,l=0 will be an isotropic tensor; if
it is cross-linked in the nematic state at some temperaturT,
the degree of anisotropy ofl=0 will reflect the degree of nem
atic order at that temperature. The free energy density r
tive to the initial state is thus

f ch5
1
2 nT~TrL= r l=0L= r

Tl=212 ln detl=0l=21!, ~5.3!

wheren is the volume density of chain segments. This pur
entropic free energy, whose ground state is the collap
state withL= r50, cannot alone provide a complete descr
tion of the elastic properties of an elastomer. It must
supplemented with some treatment of the short-range en
pic forces that prevent collapse to infinite density. Mere
imposing the incompressibility constraint, detL= r51, is suf-
ficient to provide a very good description of dense, nea
incompressible systems. We will take a phenomenolog
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approach in which there is an energy cost, measured b
compression modulusBr , arising from deviations of detL= r
from 1:

f B5 1
2 Br~detL= r21!2. ~5.4!

Our complete neoclassical energy density is thusf 5 f ch
1 f B .

An important feature of this model is that it depends
L= r only via the combinationL= rg= 0L= r

T because the determi
nant of a product of tensors is the product of the deter
nants. Thus, it is convenient to analyze this model in terms
L= 5L= rg= 0

1/2, the strain tensor relative to the isotropic sta
obtained by rescaling lengths viag

= 0
1/2 @56#. Our model is thus

f 5 1
2 nT~ l 0 / l !TrL= L= Tg

=

211 1
2 nT ln g

= 0g
=

21

1 1
2 Br@~detL= L= T/detg

= 0!1/221#2, ~5.5!

wheren is the volume density of chain segments.
We will now analyze two versions of this model: on

appropriate to the description of theI -N transition and one
appropriate to systems deep in the nematic phase. We b
with the I -N transition. In this case, we take

g
=

215d=2aQ
=

,

g
= 05~d=2aQ

= 0!21, ~5.6!

whereQ= 0 is the value ofQ= at the time of cross-linking. We
could have takeng

=
rather thang

=

21 proportional toQ
=

. Since
we are interested in smallQ

=
, there is little difference be-

tween the two choices. Our goal is to recastf in terms of the
left strain tensorv= to obtain a free energy of the form of Eq
~4.1!. We begin by finding the equilibrium strain tensorL= 0
when Q

=
50. Since there is no anisotropy whenQ

=
50, we

haveL= 05L0d i j . A straightforward minimization off with
respect toL0 whenQ

=
50 yields the equation of state

nTL0
21Br~g021!g050, ~5.7!

whereg05(detL= 0L= 0
T/detg

= 0)1/2. In the incompressible limit

Br→`, this yields L05(detg
= 0)1/2. Setting L= L= T5L0

2(d=
12v= ) and expandingf in powers ofv= using

det1/2@d=12v= #5exp@ 1
2 Tr ln~1=12v= !#

511Trv=2@Trv= 22 1
2 ~Trv= !2#1•••, ~5.8!

we obtain

d f 5mTrv= 21 1
2 B~Trv= !22amTrv=Q

=
2 1

2 nTTr ln~d=2aQ
=

!

~5.9!

to harmonic order inv= , where m5nT( l 0 / l )L0
2 and B

5Brg0
22m. This energy is identical tof el1 f C of Eq. ~4.1!

plus a part depending onQ
=

alone, which can be absorbe

into f Q8 @Eq. ~4.2!#. The strain can be integrated out to yie
2-16
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d f 52 1
4 a2nT@~ l 0 / l !L0

221!]Tr Q
=

21O~Q4!

'2
1

4
a2nTF S l 0

l
21D2

l 0

l

nT

B

1
1

6
a2

l 0

l S 12
nT

B DTrQ
= 0

2GTrQ
=

2. ~5.10!

The final form of this equation was obtained by solving t
equation of state@Eq. ~5.7!# for L0 to lowest order innT/B
and a2. In the incompressible limit (B5`) when l 0 / l 51,
there is no shift in the coefficient of TrQ= 2 and, thus, no shift
in the limit of metastability of the isotropic phase when t
system is cross-linked in the isotropic phase, but there
small shift proportional to TrQ= 0

2 when it is cross-linked in the
nematic phase@58#. If the system is compressible,BÞ`, or
if the fundamental step lengthsl 0 and l are different, then
there is a shift in the coefficient of TrQ= 2 even when the
system is cross-linked in the isotropic phase.

Deep in the nematic phase, biaxial fluctuations are s
pressed. If we assume they are completely frozen out,
the step-length tensor depends only on the director, and
can take

l i j
215 l'

21@d i j 1~r 2121!ninj # ~5.11!

and l 0i j 5 l 0'@d i j 1(r 21)n0in0 j #, wherer 5 l uu / l' . Sincel=0
has been scaled away by the transformation fromL= r to L= ,
the equilibrium strainL= 0 for a givenn will have components
parallel and perpendicular ton and will have the form of Eq.
~3.2b! with n0i replaced byni . As n rotates so doesL= 0, but
the magnitudesL0uu andL0' do not change. Settingdv=50
and minimizing overL= 0, we find the equations of state

nT
l 0'

l'

1

r
L0uu

2 1Br~g021!g050,

nT
l 0'

l'
L0'

2 1Br~g021!g050. ~5.12!

These equations implyL0uu
2 /L0'

2 5r 5 l uu / l' for all Br . Using
det(d=12v= 012dv= )5detL= 0L= 0

Tdet(d=1L= 0
21dv=L= 0

21) and ex-
panding indv= , we obtain

d f w8 5m~wuu
21w'

abw'
ab!1 1

2 B~wuu1w'
aa!212m8wuu'

a wuu'
a ,

~5.13!

where m5nT( l 0' / l 0uu)L0'
2 , B5Brg0

22m, and m85 1
4 m(2

1r 1r 21). This is identical to Eq.~3.13! with C15B
12m, C25B, C35B, C45m andC552m8.

The free energyd f w8 of Eq. ~5.13! has a higher symmetry
than the most general free energyd f w of Eq. ~4.22!: it has
only three rather than the five independent elastic consta
As a result, certain distortions will have the same energy
the model that do not have the same energy in the m
general model. For example, purely dilational and compr
sional strains withLxx and Lzz interchanged will have the
same energy ind f w8 but not ind f w . The simplified form of
Eq. ~5.13! resulted from our use of Eq.~5.11! for l i j

21 . In
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general,l i j
21 depends on the full tensor order parameterQi j

5S(ninj2
1
3 d i j )1Bi j where Bi j is the biaxial part ofQi j

with components in the plane perpendicular ton. Deep in the
nematic phase, fluctuationsdS in the magnitude ofS and in
Bi j are small. The most general form ofl i j

21 to lowest order
in dS andBi j is

l i j
215 l'

21@d i j 1~r 2121!ninj

1adS~ninj2
1
3 d i j !1bBi j #, ~5.14!

wherea andb are numbers. The nematic energy has con
butions 1

2 A1(dS)21 1
2 A2TrB= 2, whereA1 and A2 are given,

respectively, within Landau–de Gennes mean-field theory
Eq. ~A6!, in addition to the Frank free energy. Integrating o
dS and Bi j from the total free energy will yield an elasti
energy inwuu , w'

ab , and wuu'
a with five independent elastic

constants, whose calculation we leave to the reader. The
tive importance of fluctuations indS and Bi j depends, of
course, on the ratio ofA1 to A2. In the Landau–de Genne
model discussed in Appendix AA1 /A2,1 near the transition
from the isotropic to the nematic phase, butA1 /A2@1 when
ur Qu@w3

2/w4 deep in the nematic phase. Thus, though b
fluctuations are suppressed deep in the nematic phase,
tuations indS are suppressed more than biaxial fluctuatio

Crosslinking in the nematic phase

There is no qualitative distinction in the simple neocla
sical theory between cross-linking in the nematic and iso
pic phases. In both cases, the equilibrium phase exhibits
soft-elasticity characteristic of spontaneous breaking of
rotational symmetry of the isotropic state. Thus, additio
physics must be added to the simple neoclassical mode
produce the expected memory of the anisotropy of the n
atic state at cross-linking and the concomitant destruction
soft elasticity. There are a number of mechanisms that
produce this memory. For the purposes of illustration,
will consider here only a simple model studied by Verw
and Warner@36# in which soft elasticity is destroyed via
randomness in the sequence of rigid and flexible units al
polymer chain segments. The free energy of this model
duces as expected to the general form discussed in Sec. I

The sequence randomness along the chain causes the
pling parametera to be a random variable with average^a&
and variancê (da)2&. The chain energy@Eq. ~5.3!# must be
averaged overa, which appears in bothg

=
andg

= 0. This av-
erage~ignoring the detl=0l=21 terms! is

^ f ch&5 1
2 nT~ l 0 / l !TrL= r^g= 0&L= r

T^g
=

21&1d f ch, ~5.15!

where

d f ch5
1
2 ~ l 0 / l !nTTr @^L= rg= 0L= r

Tg
=

21&2L= r^g= 0&L= r
T^g
=

21&#

'2 1
2 nT~ l 0 / l !^~da!2&TrL= rQ0= L= r

TQ
=

. ~5.16!

We can now proceed as before. LetL= r5L= ^g
= 0&

21/2 express
L= in terms ofv= , and expand in powers inQ= 0. The result is
2-17
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^ f ch&52~ l 0 / l !nT^a&Trv=Q
=

2 1
2 nT^~da!2&TrL= ^g

= 0&
21/2Q0= L= T^g

= 0
T&Q

=
1••• .

~5.17!

This energy is identical to Eq.~4.31! which we expected on
general grounds. In the absence of strain, the second ter
this equation tends to align the principal axis ofQ= alongQ= 0.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this mostly pedagogical paper we have formulated
classical elasticity theory of nematic liquid-crystal gels, ca
fully incorporating all underlying symmetries and emphas
ing the distinction between independent target and refere
space rotational symmetries. Our formulation leads to
straightforward demonstration of the soft elasticity
nematic-gel phases that form via spontaneous symm
breaking from an isotropic gel. This soft elasticity is chara
terized by the symmetry-enforced vanishing of a sh
modulus and vanishing stress up to critical values of
appropriately applied strain. These and other predictions
emerge from our formulation are consistent with earlier p
dictions of the neoclassical liquid-crystal rubber theo
@5–8#, which had been very successful in explaining ma
beautiful experiments on liquid-crystal elastomers.

The advantage of our formalism is that it elucidates
origin of the novel soft elasticity of nematic gels, showin
that it is dictated by general symmetry principles common
any spontaneouslyuniaxially ordered elastic medium and
not limited to any specific model of such materials. There
our analysis also demonstrates a close connection betw
nematically ordered elastomers to other well-studied ‘‘so
lattices, such as smectics~which by symmetry include cho
lesterics!, columnar phases of fluid liquid crystals, and te
sionless membranes, where rotational symmetry~corre-
sponding to an arbitrary choice of smectic layers, colum
and membrane normal orientations! similarly enforces the
vanishing of specific elastic moduli. This connection allo
us to carry over much of the insight from those systems
gels. For example it seems likely that the buckling instabi
@57# in smectic liquid crystals under extensional strain par
lel to layer normals will provide insight into the stripe inst
bility @19# of a nematic elastomer subjected to extensio
strain perpendicular to its anisotropy axis or to the as
unstudied generalization of this phenomenon to comp
sional strain parallel to the anisotropy axis.

Our formulation also permits a straightforward incorpo
tion of a variety of important effects such as spatial var
tions due, e.g., to boundary conditions, ever present ther
fluctuations@59#, and local gel heterogeneity@31,32#, thereby
allowing a full statistical-mechanical treatment of nema
elastomers. Again, experience with smectics@31,32,59#, co-
lumnar phases@31,32# of conventional liquid crystals, and
the flat phase of tensionless elastic membranes@52–54#
strongly suggests that the latter two effects will qualitative
modify long scales elastic properties of nematically orde
gels, leading to phenomena such as, for example, anoma
elasticity, negative Poisson ratio, and topological glass or
01170
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A connection of liquid-crystal gels to a large body of wo
on closely related systems of conventional liquid cryst
confined inrigid gels, such as the aerogel@11,31,32#, natu-
rally leads to an important general question: What role d
gel elasticity play in determining the properties and stabi
of liquid-crystal phases confined insideflexible ~as opposed
to aerogels! heterogeneous gels such as aerosils@11,12#?
With the elastic formulation presented here we plan to
dress this question in a future publication.

Finally, the presented description is also natural for tre
ment of fluctuating nematic elastomer membranes@26#,
which constitute a new universality class of membranes, a
ing to the well-studied classes of fluid, hexatic, and crys
line membranes@25#. In addition to the richness exhibited b
those systems, we expect new physics associated with
interplay of the in-plane and undulation nonlinear elastic
both expected to be important in elastomer membranes@26#.
Finally, such in-plane orientationally ordered elastic me
branes are novel realizations of anisotropic membranes,
dicted to exhibit flat, tubule, and crumpled phases@60#, sub-
sequently observed in Monte Carlo simulations@61#. We plan
to explore these and other phenomena and realization
orientationally ordered elastomers in future publicatio
@26#.
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APPENDIX A: REVIEW OF NEMATIC ENERGY

In this appendix, we will review standard treatments
the isotropic-to-nematic transition, principally to establi
notation. We introduce a complete set of orthonorm
symmetric-traceless tensorsI i j

a satisfying TrI=aI=b5dab:

I=05A2

3S 2 1
2 0 0

0 2 1
2 0

0 0 1
D , I=15

1

A2 S 1 0 0

0 21 0

0 0 0
D ,

I=25
1

A2 S 0 1 0

1 0 0

0 0 0
D , I=35

1

A2 S 0 0 1

0 0 0

1 0 0
D ,

I=45
1

A2 S 0 0 0

0 0 1

0 1 0
D . ~A1!

Any symmetric-traceless tensor can be expressed as a l
combination of these matrices:Qi j 5(a50

4 QaI i j
a , whereQa

5TrQ
=

I=a. Thus,
2-18
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Q05A 2
3 FQzz2

1

2
~Qxx1Qyy!G , Q15

1

A2
~Qxx2Qyy!,

Q25A2Qxy , Q35A2Qxz , Q45A2Qyz . ~A2!

With n0 along the z axis, I i j
0 5A3/2@ni

0nj
02(1/3)d i j #. In

uniaxial nematic phase,Qi j
0 5S@ni

0nj
02(1/3)d i j #5Q0I i j

0 and
Q05A2/3S. The Landau–de Gennes free energy for a ne
atic is

f Q5 1
2 r QTrQ

=

22w3TrQ
=

31w4~TrQ
=

2!2,

5 1
2 r Q(

a
Qa

21w4S (
a

Qa
2 D 2

2w3@ 1
2
A 2

3 Q0
32A 3

2 Q0~Q1
21Q2

2!1 1
2
A 3

2 Q0~Q3
21Q4

2!#

2
1

2A2
w3@3Q1~Q2

22Q3
2!16Q2Q3Q4#. ~A3!

Minimization with respect toQ0 yields the equation of stat

r QQ014w4Q0
32A3

2 w3Q0
250 . ~A4!

Then expansion to second order in deviationsdQa5Qa

2Qa
0 yields

d f 5 1
2 A1~dS!21 1

2 A2~Q1
21Q2

2!, ~A5!

where

A15 2
3 ~r Q18w4S222w3S!,

A253w3S. ~A6!

As anticipated from the underlying rotational invarianc
there are no terms proportional todQ3

2 or dQ4
2.

APPENDIX B: LINEARIZED LIMITS OF EULERIAN AND
LAGRANGIAN ELASTICITY

It is often the case that a linearized theory of elasticity,
which nonlinear strains are replaced by their linearized lim
and only terms to harmonic order in these linearized stra
are included in the free energy, provides an adequate des
tion of elastic distortions. It is, therefore, interesting to s
how this linearized limit is reached. It turns out that this lim
can be taken more cleanly in the Eulerian picture in wh
the displacement field is a part of the phase of a mass-de
wave rather than the Lagrangian picture in whichu(x) is a
displacement relative to a reference configuration. For a
ther discussion of these two pictures of elasticity, see R
@16#. Much of our intuition about how to construct a linea
ized theory comes from the Eulerian picture in which t
displacement field is a vector field in space that obeys
usual rules of transformation of vector fields. In this Appe
dix, we will discuss the linearized limits of Eulerian an
Lagrangian elasticities.
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1. Eulerian elasticity

In Eulerian elasticity, the displacement fieldu(x) is a vec-
tor field in three space. Like all vector fields that transfo
under the same group as space itself,u transforms under a
rotation of the whole sample as

u8~x!5Uu~x!U215O= u~O= 21x!, ~B1!

where U is a rotation operator~e.g., quantum mechanica
operator! and O= is its associated three-dimensional rotati
matrix. Here the prime indicates the value of the field af
the rotation operator is applied. To leave the system
changed,U must be an operation in the point group of th
crystal. In the Eulerian picture,u(x) is a Goldstone field
associated with the broken spatial symmetry of a crys
Thus, strictly speaking, the highest-symmetry point group
three dimensions in the cubic group. To make contact w
our discussion of gels, we can, however, imagine a system
which all rotations are in the point group. Sinceu is a vector
field, ] iuj is a tensor field that satisfies

~] iuj !8~x!5U] iujU
215Oik]k8ul~x8!Ol j

21 , ~B2!

wherex8[O= 21x, ] i85]/]xi8 , and as before the prime indi
cates the value of the operator after rotation. Alternative
we can introduce

h i j 5] jui , ~B3!

which

h
=
85O= h

=
O= 21 . ~B4!

Scalars created fromh= or from u and its derivatives are
invariant underU. For example,

h i i 5] iui , h i j h j i , ~B5!

etc., are scalars underU.
The above symmetries and considerations apply toany

vector field. The displacement fieldu, however, has addi-
tional properties arising from the fact that it is a Goldsto
field. In particular, the system is invariant under rotation
the mass-density wave crystal~which is not the same thing
as rotating the whole sample!. The transformation

x2u~x!→O= @x2u~x!# ~B6!

rotates the crystal. Thus, the transformation

u→u8~x!52O= @x2u~x!#1x ~B7!

does not change the energy of the system. This implies
the elastic energy will depend only on the Euleriansymme-
trized strain,

ui j
E5] iuj1] iuj2] iuk] juk'] iuj1] iuj , ~B8!

'] iuj1] iuj , ~B9!

where the final form is its harmonic limit.
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Thus, we have two symmetries:~1! symmetries associate
with rotation of the whole sample, and~2! rotations of the
lattice. Invariance with respect to the first requires that
energy depend only on scalars formed by contracting ind
of both gradients andu’s. The second invariance require
that the energy be a function only of the nonlinear strainui j

E .
The interesting thing is thatboth ui j

E and its linearized form
transform like tensors under~1!, i.e., underO. Thus, con-
tracted tensors of eitheru= E or its linearized form are scalar
underO.

2. Lagrangian elasticity

In Lagrangian elasticity, there are as we have discus
two symmetries:~1! rotationsOT in the target space and~2!
rotation OR in the reference space. Under these operatio
the displacement vector satisfies

R8~x!5O= TR~O= R
21x!. ~B10!

Under infinitesimal rotations,

OTi j5d i j 1e i jkuTk , ~B11!

ORi j5d i j 1e i jkuRk , ~B12!

and

] iuj85] i8uj1e i jp~uRp2uTp!1e ikp]k8ujuRp2ek jp] i8ukuTp.
~B13!

The energy is invariant under independent rotations thro
uR anduT . As we have seen, these invariances are gua
teed by making the free energy a function only of the fu
contractedui j or v i j tensors.

Now, let us look at the linearized limit. Under both rot
tions, we have

] iuj81] jui85] i8uj1] j8ui1~e ikp]k8uj1e jkp]k8ui !uRp

2~ek jp] i8uk1ekip] j8uk!uTp . ~B14!

Note that to leading order inu andu, this symmetrized com-
bination is independent ofuR and uT as it should be. The
terms of orderuu tell us about the tensorial rotation prope
ties of the system. IfuR5uT5u, then the symmetrized com
binationui j

S5] iuj1] jui transforms like a tensor, i.e.,

u8= S5O= u= SO= 21. ~B15!

The linearized strainu= S does not, however, transform like
tensor under independent rotationsuR and uT . If, for ex-
ample,uR is zero, the term proportional to the productuRiuk
in the transformation ofu= S depends on both the symmetr
and antisymmetric parts of] iuj . Only the fully nonlinear
strainsui j andv i j transform like tensors even to linear ord
in uR or uT . We leave it as an exercise to verify this expli
itly. Thus, we cannot use the linearized tensors to discuss
rotation and tensorial properties of strains in the Lagrangia
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language.We can, however, as discussed above, use th
fruitfully in the Eulerian language. However, once we ha
constructed a rotationally invariant Lagrangian energy,
can replace nonlinear strains by linearized ones to disc
harmonic elastic fluctuations.

APPENDIX C: EVALUATION OF BA

In this appendix, we outline the algebraic steps betwe
Eqs.~4.11! and~4.12!. We need to integrate overdS andQ1
andQ2. Since these variables appear only to quadratic or
the integration is trivial and yields

d f u2v5 1
2 B1~Trdu= !21m2~v1

21v2
2!1m0dv0

22gdv0Trdu= ,

~C1!

where

B15B2
16s2S2

9A8
,

m05m2
4t2

3A8
,

m25
mA2

A21~2t2/m!
,

g524S 2

3D 3/2stS

A8
, ~C2!

where

A85A11
9s2

4B
S21

3t2

m
. ~C3!

Setting Trdu=5(dvxx1dvyy1dvzz), replacingv0 , v1, and
v2 with expressions obtained from Eqs.~A2! ~with the tensor
Q= replaced bydv= ) and including thedva2(t/m)dQa with
a53,4 terms in Eq.~4.11!, we obtain Eq.~4.12! with

B̄15B11
4

3
m022A2

3
g,

B̄25B22
2

3
m02

1

2
A2

3
g,

B̄35B12m21
1

3
m01A2

3
g,

B̄45m2 . ~C4!
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